2023
Authors
Vasconcelos, H; Matias, A; Mendes, J; Araujo, J; Dias, B; Jorge, PAS; Saraiva, C; de Almeida, JMMM; Coelho, LCC;
Publication
TALANTA
Abstract
Hydrogen peroxide is usually added to products to delay the development of microorganisms mainly in milk, hence increasing its stability over time, however the side effects can become devastating to human health.A technique is presented consisting of detecting hydrogen peroxide as an adulterant in milk through a sensor where pretreatment of the sample is not necessary, using a single use membrane. The detection of hydrogen peroxide in fresh-raw, whole, semi-skimmed and skimmed milk was performed using a luminol chem-iluminescence reaction.For hydrogen peroxide water solutions, a linear response was attained from 1.0 x 10-4 to 9.0 x 10-3 %w/w and an LOD (limit of detection) of 3.0 x 10-5 %w/w was determined. An R-squared value of 0.97 and a relative standard deviation lower than 10%, were achieved.Hydrogen peroxide concentration as low as 1.0 x 10-3 %w/w was measured for fresh-raw, skim and whole milk and for semi-skimmed milk, as low as 2.0 x 10-3 %w/w.The methodology presented, as long as our knowledge, is original, rapid, ecological and inexpensive. In regard of the sensitivity obtained, the methodology has great possibility to be applied in the detection of hydrogen peroxide in several areas. It is envisaged monitoring of food quality, agriculture systems and environment pollution.
2023
Authors
da Silva, PM; Coelho, LCC; de Almeida, JMMM;
Publication
CHEMOSENSORS
Abstract
Water vapor sorption is a powerful tool for the analysis of cement paste, one of the most used substances by mankind. The monitoring of cementitious materials is fundamental for the improvement of infrastructure resilience, which has a deep impact on the economy, the environment, and on society. In this work, a multimode fiber was embedded in cement paste for real-time monitoring of cement paste water vapor sorption. Changes in the reflected light intensity due to the build-up of water in the cement paste's pores were exploited for this purpose. The sample was 7-day moist cured, and the relative humidity was controlled between 8.9% and 97.6%. Reflected light intensity was converted into a specific surface area of cement paste (133 m(2)/g) and thickness of water through the Brunauer-Emmett-Teller (BET) method and into a pore size distribution through the Barret-Joyner-Halenda (BJH) method. The results achieved through reflected light intensity agree with those found in the literature, validating the usage of this setup for the monitoring of water vapor sorption, breaking away from standard gravimetric measurements.
2023
Authors
Dos Santos, PSS; Mendes, JP; Dias, B; Perez-Juste, J; De Almeida, JMMM; Pastoriza-Santos, I; Coelho, LCC;
Publication
SENSORS
Abstract
Biochemical-chemical sensing with plasmonic sensors is widely performed by tracking the responses of surface plasmonic resonance peaks to changes in the medium. Interestingly, consistent sensitivity and resolution improvements have been demonstrated for gold nanoparticles by analyzing other spectral features, such as spectral inflection points or peak curvatures. Nevertheless, such studies were only conducted on planar platforms and were restricted to gold nanoparticles. In this work, such methodologies are explored and expanded to plasmonic optical fibers. Thus, we study-experimentally and theoretically-the optical responses of optical fiber-doped gold or silver nanospheres and optical fibers coated with continuous gold or silver thin films. Both experimental and numerical results are analyzed with differentiation methods, using total variation regularization to effectively minimize noise amplification propagation. Consistent resolution improvements of up to 2.2x for both types of plasmonic fibers are found, demonstrating that deploying such analysis with any plasmonic optical fiber sensors can lead to sensing resolution improvements.
2023
Authors
Araujo, JCC; dos Santos, PSS; Dias, B; de Almeida, JMMM; Coelho, LCC;
Publication
IEEE SENSORS JOURNAL
Abstract
The interrogation of optical fiber sensors (OFS) often relies on complex devices such as optical spectrum analyzers (OSAs) that are expensive with low portability and mainly suited to laboratory measurements or dedicated interrogation systems with limited spectral range. An interrogation unit was designed and fabricated using a photodetector combined with a micro-electromechanical system and a Fabry-Perot interferometer (MEMS-FPI) working as a tunable filter with a response in the range 1350-1650 nm. Deconvolution techniques were applied to mitigate the effect of the broadband response of the tunable filter on the measured signal. The performance of the unit was validated with the interrogation of long-period fiber gratings (LPFGs) as temperature, refractive index (RI), and relative humidity (RH) sensors. For the temperature, a sensitivity of 0.135 +/- 0.007 nm/degrees C was obtained, which showed a 4.9% relative error when compared to the same measurement with an OSA. For the RI, a sensitivity of 147 +/- 11 nm/RIU was obtained, which showed a relative error lower than 1% when compared to the OSA. For the humidity, sensitivities of 0.742 +/- 0.005 and 0.056 +/- 0.006 nm/%RH were obtained, with errors of 2.75% and 6.67%, respectively, when compared to a commercial dedicated interrogation system. The low relative error obtained when compared to commercial alternatives shows the potential of the system to be used in real-time applications that require portability, low cost, energy efficiency, and capacity for integration in dedicated systems.
2023
Authors
da Silva, PM; Mendes, JP; Coelho, LCC; de Almeida, JMMM;
Publication
CHEMOSENSORS
Abstract
Reinforced concrete structures are prevalent in infrastructure and are of significant economic and social importance to humanity. However, they are prone to decay from cement paste carbonation. pH sensors have been developed to monitor cement paste carbonation, but their adoption by the industry remains limited. This work introduces two new methods for monitoring cement paste carbonation in real time that have been validated through the accelerated carbonation of cement paste samples. Both configurations depart from traditional pH monitoring. In the first configuration, the carbonation depth of a cement paste sample is measured using two CO2 optical fiber sensors. One sensor is positioned on the surface of the sample, while the other is embedded in the middle. As the carbonation depth progresses and reaches the embedded CO2 sensor, the combined response of the sensors changes. In the second configuration, a multimode fiber is embedded within the paste, and its carbonation is monitored by observing the increase in reflected light intensity (1.6-18%) resulting from the formation of CaCO3. Its applicability in naturally occurring carbonation is tested at concentrations of 3.2% CO2, and the influence of water is positively evaluated; thus, this setup is suitable for real-world testing and applications.
2007
Authors
Conceicao, AS; Ferreira, LFR; Fernandes, LMP; Monteiro, CMB; Coelho, LCC; Azevedo, CDR; Veloso, JFCA; Lopes, JAM; dos Santos, JMF;
Publication
JOURNAL OF INSTRUMENTATION
Abstract
The use of the scintillation produced in the charge avalanches in GEM holes as signal amplification and readout is investigated for xenon. A VUV-sensitive avalanche photodiode has been used as photosensor. Detector gains of about 4 x 104 are achieved in scintillation readout mode, for GEM voltages of 490 V and for a photosensor gain of 150. Those gains are more than one order of magnitude larger than what is obtained using charge readout. In addition, the energy resolutions achieved with the scintillation readout are lower than those achieved with charge readout. The GEM scintillation yield in xenon was measured as a function of GEM voltage, presenting values that are about a half of those achieved for the charge yield, and reach about 730 photons per primary electron at GEM voltages of 490 V.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.