Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Pedro Manuel Ribeiro

2007

Plugging Computer Labs to the Grid

Authors
Ribeiro, P; Pereira, P; Lopes, L; Silva, F;

Publication
IBERGRID: 1ST IBERIAN GRID INFRASTRUCTURE CONFERENCE PROCEEDINGS

Abstract
We present an architecture that allows the seamless configuration of computer labs to work as dedicated computing clusters during periods of user inactivity. The operation of the cluster is fully automated by making use of differentiated network booting and a job management system. We have prepared it to be plugged to a larger computational grid. We provide some preliminary performance results obtained.

2023

Evaluation of Regularization Techniques for Transformers-Based Models

Authors
Oliveira, HS; Ribeiro, PP; Oliveira, HP;

Publication
Pattern Recognition and Image Analysis - 11th Iberian Conference, IbPRIA 2023, Alicante, Spain, June 27-30, 2023, Proceedings

Abstract

2021

Anti-Money Laundering Alert Optimization Using Machine Learning with Graphs

Authors
Eddin, AN; Bono, J; Aparício, D; Polido, D; Ascensão, JT; Bizarro, P; Ribeiro, P;

Publication
CoRR

Abstract

2025

Multilayer horizontal visibility graphs for multivariate time series analysis

Authors
Silva, VF; Silva, ME; Ribeiro, P; Silva, F;

Publication
DATA MINING AND KNOWLEDGE DISCOVERY

Abstract
Multivariate time series analysis is a vital but challenging task, with multidisciplinary applicability, tackling the characterization of multiple interconnected variables over time and their dependencies. Traditional methodologies often adapt univariate approaches or rely on assumptions specific to certain domains or problems, presenting limitations. A recent promising alternative is to map multivariate time series into high-level network structures such as multiplex networks, with past work relying on connecting successive time series components with interconnections between contemporary timestamps. In this work, we first define a novel cross-horizontal visibility mapping between lagged timestamps of different time series and then introduce the concept of multilayer horizontal visibility graphs. This allows describing cross-dimension dependencies via inter-layer edges, leveraging the entire structure of multilayer networks. To this end, a novel parameter-free topological measure is proposed and common measures are extended for the multilayer setting. Our approach is general and applicable to any kind of multivariate time series data. We provide an extensive experimental evaluation with both synthetic and real-world datasets. We first explore the proposed methodology and the data properties highlighted by each measure, showing that inter-layer edges based on cross-horizontal visibility preserve more information than previous mappings, while also complementing the information captured by commonly used intra-layer edges. We then illustrate the applicability and validity of our approach in multivariate time series mining tasks, showcasing its potential for enhanced data analysis and insights.

2018

GoT-WAVE: Temporal network alignment using graphlet-orbit transitions

Authors
Aparício, DO; Ribeiro, P; Milenkovic, T; Silva, F;

Publication
CoRR

Abstract

2017

Temporal Network Comparison using Graphlet-orbit Transitions

Authors
Aparício, DO; Pinto Ribeiro, PM; Silva, FMA;

Publication
CoRR

Abstract

  • 11
  • 12