2023
Authors
Pereira, R; Couto, M; Cunha, J; Melfe, G; Saraiva, J; Fernandes, JP;
Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
This tutorial aims to provide knowledge on a different facet of efficiency in data structures: energy efficiency. As many recent studies have shown, the main roadblock in regards to energy efficient software development are the misconceptions and heavy lack of support and knowledge, for energy-aware development, that programmers have. Thus, this tutorial aims at helping provide programmers more knowledge pertaining to the energy efficiency of data structures. We conducted two in-depth studies to analyze the performance and energy efficiency of various data structures from popular programming languages: Haskell and Java. The results show that within the Haskell programming language, the correlation between performance and energy consumption is statistically almost identical, while there are cases with more variation within the Java language. We have presented which data structures are more efficient for common operations, such as inserting and removing elements or iterating over the data structure. The results from our studies can help support developers in better understanding such differences within data structures, allowing them to carefully choose the most adequate implementation based on their requirements and goals. We believe that such results will help further close the gap when discussing the lack of knowledge in energy efficient software development. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
2023
Authors
Ribeiro, F; de Macedo, JNC; Tsushima, K; Abreu, R; Saraiva, J;
Publication
PROCEEDINGS OF THE 16TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON SOFTWARE LANGUAGE ENGINEERING, SLE 2023
Abstract
Type systems are responsible for assigning types to terms in programs. That way, they enforce the actions that can be taken and can, consequently, detect type errors during compilation. However, while they are able to flag the existence of an error, they often fail to pinpoint its cause or provide a helpful error message. Thus, without adequate support, debugging this kind of errors can take a considerable amount of effort. Recently, neural network models have been developed that are able to understand programming languages and perform several downstream tasks. We argue that type error debugging can be enhanced by taking advantage of this deeper understanding of the language's structure. In this paper, we present a technique that leverages GPT-3's capabilities to automatically fix type errors in OCaml programs. We perform multiple source code analysis tasks to produce useful prompts that are then provided to GPT-3 to generate potential patches. Our publicly available tool, Mentat, supports multiple modes and was validated on an existing public dataset with thousands of OCaml programs. We automatically validate successful repairs by using Quickcheck to verify which generated patches produce the same output as the user-intended fixed version, achieving a 39% repair rate. In a comparative study, Mentat outperformed two other techniques in automatically fixing ill-typed OCaml programs.
2023
Authors
Saraiva, J; Pereira, R;
Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
Sustainable development has become an increasingly important theme not only in the world politics, but also an increasingly central theme for the engineering professions around the world. Software engineers are no exception as shown in various recent research studies. Despite the intensive research on green software, today’s undergraduate computing education often fails to address our environmental responsibility. In this paper, we present a module on energy efficient software that we introduced as part of an advanced course on software analysis and testing. In this module students study techniques and tools to analyze and optimize energy consumption of software systems. Preliminary results of the first four instances of this course show that students are able to optimize the energy consumption of software systems. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
2023
Authors
Saraiva, J; Degueule, T; Scott, E;
Publication
SLE
Abstract
2023
Authors
Rua, R; Saraiva, J;
Publication
2023 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION, ICSME
Abstract
This paper presents PyAnaDroid, an open-source, fully-customizable execution pipeline designed to benchmark the performance of Android native projects and applications, with a special emphasis on benchmarking energy performance. PyAnaDroid is currently being used for developing large-scale mobile software empirical studies and for supporting an advanced academic course on program testing and analysis. The presented artifact is an expandable and reusable pipeline to automatically build, test and analyze Android applications. This tool was made openly available in order to become a reference tool to transparently conduct, share and validate empirical studies regarding Android applications. This document presents the architecture of PyAnaDroid, several use cases, and the results of a preliminary analysis that illustrates its potential. Video demo: https://youtu.be/7AV3nrh4Qc8
2023
Authors
Lucas, W; Bonifácio, R; Saraiva, J;
Publication
2023 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION, ICSME
Abstract
The continuous evolution of programming languages has brought benefits and new challenges for software developers. In recent years, we have witnessed a rapid release of new versions of mainstream programming languages like Java. While these advancements promise better security, enhanced performance, and increased developers' productivity, the constant release of new language versions has posed a particular challenge for practitioners: how to keep their systems up-to-date with new language releases. This thesis aims to understand the pains, motivations, and practices developers follow during rejuvenating efforts-a particular kind of software maintenance whose goal is to avoid obsolesce due to the evolution of programming languages. To this end, we are building and validating a theory using a mixed methods study. In the first study, we interviewed 23 software developers and used the Constructivist Grounded Theory Method to identify recurrent challenges and practices used in rejuvenation efforts. In the second study, we mined the software repositories of open-source projects written in C++ and JavaScript to identify the adoption of new language features and whether or not software developers conduct large rejuvenation efforts. The first study highlights the benefits of new feature adoption and rejuvenation, revealing developer methods and challenges. The second study emphasizes open-source adoption trends and patterns for modern features. In the third and final study, our goal is to share our theory on software rejuvenation with practitioners through the Focus Group method with industrial patterns.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.