2024
Authors
Silva, CA; Vilaça, R; Pereira, A; Bessa, RJ;
Publication
RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Abstract
High-performance computing relies on performance-oriented infrastructures with access to powerful computing resources to complete tasks that contribute to solve complex problems in society. The intensive use of resources and the increase in service demand due to emerging fields of science, combined with the exascale paradigm, climate change concerns, and rising energy costs, ultimately means that the decarbonization of these centers is key to improve their environmental and financial performance. Therefore, a review on the main opportunities and challenges for the decarbonization of high-performance computing centers is essential to help decision-makers, operators and users contribute to a more sustainable computing ecosystem. It was found that state-of-the-art supercomputers are growing in computing power, but are combining different measures to meet sustainability concerns, namely going beyond energy efficiency measures and evolving simultaneously in terms of energy and information technology infrastructure. It was also shown that policy and multiple entities are now targeting specifically HPC, and that identifying synergies with the energy sector can reveal new revenue streams, but also enable a smoother integration of these centers in energy systems. Computing-intensive users can continue to pursue their scientific research, but participating more actively in the decarbonization process, in cooperation with computing service providers. Overall, many opportunities, but also challenges, were identified, to decrease carbon emissions in a sector mostly concerned with improving hardware performance.
2024
Authors
Cepa, B; Brito, C; Sousa, A;
Publication
Abstract
2024
Authors
Silva, JM; Ribeiro, D; Ramos, LFM; Fonte, V;
Publication
57th Hawaii International Conference on System Sciences, HICSS 2024, Hilton Hawaiian Village Waikiki Beach Resort, Hawaii, USA, January 3-6, 2024
Abstract
The availability of public services through online platforms has improved the coverage and efficiency of essential services provided to citizens worldwide. These services also promote transparency and foster citizen participation in government processes. However, the increased online presence also exposes sensitive data exchanged between citizens and service providers to a wider range of security threats. Therefore, ensuring the security and trustworthiness of online services is crucial to Electronic Government (EGOV) initiatives' success. Hence, this work assesses the security posture of online platforms hosted in 3068 governmental domain names, across all UN Member States, in three dimensions: support for secure communication protocols; the trustworthiness of their digital certificate chains; and services' exposure to known vulnerabilities. The results indicate that despite its rapid development, the public sector still falls short in adopting international standards and best security practices in services and infrastructure management. This reality poses significant risks to citizens and services across all regions and income levels. © 2024 IEEE Computer Society. All rights reserved.
2024
Authors
Edixhoven, L; Jongmans, SS; Proença, J; Castellani, I;
Publication
JOURNAL OF LOGICAL AND ALGEBRAIC METHODS IN PROGRAMMING
Abstract
Choreographic languages describe possible sequences of interactions among a set of agents. Typical models are based on languages or automata over sending and receiving actions. Pomsets provide a more compact alternative by using a partial order to explicitly represent causality and concurrency between these actions. However, pomsets offer no representation of choices, thus a set of pomsets is required to represent branching behaviour. For example, if an agent Alice can send one of two possible messages to Bob three times, one would need a set of 2 x 2 x 2 distinct pomsets to represent all possible branches of Alice's behaviour. This paper proposes an extension of pomsets, named branching pomsets, with a branching structure that can represent Alice's behaviour using 2 + 2 + 2 ordered actions. We compare the expressiveness of branching pomsets with that of several forms of event structures from the literature. We encode choreographies as branching pomsets and show that the pomset semantics of the encoded choreographies are bisimilar to their operational semantics. Furthermore, we define well-formedness conditions on branching pomsets, inspired by multiparty session types, and we prove that the well-formedness of a branching pomset is a sufficient condition for the realisability of the represented com-munication protocol. Finally, we present a prototype tool that implements our theory of branching pomsets, focusing on its applications to choreographies. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
2024
Authors
Proença, J;
Publication
FORMAL ASPECTS OF COMPONENT SOFTWARE, FACS 2023
Abstract
This paper provides an overview on recent work on Team Automata, whereby a network of automata interacts by synchronising actions from multiple senders and receivers. We further revisit this notion of synchronisation in other well known concurrency models, such as Reo, BIP, Choreography Automata, and Multiparty Session Types. We address realisability of Team Automata, i.e., how to infer a network of interacting automata from a global specification, taking into account that this realisation should satisfy exactly the same properties as the global specification. In this analysis we propose a set of interesting directions of challenges and future work in the context of Team Automata or similar concurrency models.
2024
Authors
ter Beek, MH; Hennicker, R; Proença, J;
Publication
COORDINATION MODELS AND LANGUAGES, COORDINATION 2024
Abstract
Team Automata is a formalism for interacting component-based systems proposed in 1997, whereby multiple sending and receiving actions from concurrent automata can synchronise. During the past 25+ years, team automata have been studied and applied in many different contexts, involving 25+ researchers and resulting in 25+ publications. In this paper, we first revisit the specific notion of synchronisation and composition of team automata, relating it to other relevant coordination models, such as Reo, BIP, Contract Automata, Choreography Automata, and Multi-Party Session Types. We then identify several aspects that have recently been investigated for team automata and related models. These include communication properties (which are the properties of interest?), realisability (how to decompose a global model into local components?) and tool support (what has been automatised or implemented?). Our presentation of these aspects provides a snapshot of the most recent trends in research on team automata, and delineates a roadmap for future research, both for team automata and for related formalisms.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.