Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by SEM

2023

An Integrated Approach Using Robotic Process Automation and Artificial Intelligence as Disruptive Technology for Digital Transformation

Authors
Araújo, A; Mamede, HS; Filipe, V; Santos, V;

Publication
INFORMATION SYSTEMS, EMCIS 2022

Abstract
Digital transformation is a phenomenon arising from social, behavioral and habitual changes due to global economic and technological development. Its main characteristic is adopting disruptive digital technologies by organizations to transform their capabilities, structures, processes and business model components. One of the disruptive digital technologies used in organizations' digital transformation process is Robotic Process Automation. However, the use of Robotic Process Automation is limited by several constraints that affect its reliability and increase the cost. Artificial Intelligence techniques can improve some of these constraints. The use of Robotic Process Automation combined with Artificial Intelligence capabilities is called Hyperautomation. However, there is a lack of solutions that successfully integrate both technologies in the context of digital transformation. This work proposes an integrated approach using Robotic Process Automation and Artificial Intelligence as disruptive Hyperautomation technology for digital transformation.

2023

A method for selecting processes for automation with AHP and TOPSIS

Authors
Costa, DS; Mamede, HS;

Publication
HELIYON

Abstract
Organizations are more frequently turning towards robotic process automation (RPA) as a solu-tion for employees to focus on higher complexity and more valuable tasks while delegating routine, monotonous and rule-based tasks to their digital colleagues. These software robots can handle various rule-based, digital, repetitive tasks. However, currently available process identi-fication methods must be qualified to select suitable automation processes accurately. Wrong process selection and failed attempts are often the origin of process automation's bad reputation within organizations and often result in the avoidance of this technology. As a result, in this research, a method for selecting processes for automation combining two multi-criteria decision -making techniques, 'Analytic Hierarchy Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), will be proposed, demonstrated, and evaluated. This study follows the Design Science Research Methodology (DSRM) and applies the proposed method for selecting processes for automation to a real-life scenario. The result will be a method to support the proper selection of business processes for automation, increasing the success of implementing RPA tools in an organization.

2023

Students' perceptions of higher education courses and instructors before and during Covid-19: the case of the Industrial Engineering and Management degree at the University of Porto

Authors
Ferreira, MC; Silva, AR; Camanho, AS;

Publication
U.Porto Journal of Engineering

Abstract
The recognition of Covid-19 as a global pandemic in March 2020 forced the closure of schools and universities around the world, raising the need to adopt emergency teaching methods. A year and a half later, the situation is still not resolved, but there is more data that allow us to understand the real impact. This study presents a comprehensive analysis of higher education students perceptions about courses and faculty during the last 5 years (2016-2021), with a special focus on the differences in perception between the pre-Covid-19 and the during Covid-19 phases. To this end, the pedagogical surveys that are answered by students from an engineering degree at a Portuguese university at the end of the first and second semester of the academic year are analyzed. The results allow us to identify two distinct moments in the Covid-19 phase: a first in which feelings of positivism and appreciation of students for the instructors and the courses they teach stand out, and a second moment in which students become more demanding and dissatisfied with the courses and with the instructors, leading to a lack of motivation and involvement of students. © 2023, Universidade do Porto - Faculdade de Engenharia. All rights reserved.

2023

The Art of the Deal: Machine Learning Based Trade Promotion Evaluation

Authors
Viana, DB; Oliveira, BB;

Publication
Springer Proceedings in Mathematics and Statistics

Abstract
Trade promotions are complex marketing agreements between a retailer and a manufacturer aiming to drive up sales. The retailer proposes numerous sales promotions that the manufacturer partially supports through discounts and deductions. In the Portuguese consumer packaged goods (CPG) sector, the proportion of price-promoted sales to regular-priced sales has increased significantly, making proper promotional planning crucial in ensuring manufacturer margins. In this context, a decision support system was developed to aid in the promotional planning process of two key product categories of a Portuguese CPG manufacturer. This system allows the manufacturer’s commercial team to plan and simulate promotional scenarios to better evaluate a proposed trade promotion and negotiate its terms. The simulation is powered by multiple gradient boosting machine models that estimate sales for a given promotion based solely on the scarce data available to the manufacturer. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2023

New resource-constrained project scheduling instances for testing (meta-)heuristic scheduling algorithms

Authors
Coelho, J; Vanhoucke, M;

Publication
COMPUTERS & OPERATIONS RESEARCH

Abstract
The resource-constrained project scheduling problem (RCPSP) is a well-known scheduling problem that has attracted attention since several decades. Despite the rapid progress of exact and (meta-)heuristic procedures, the problem can still not be solved to optimality for many problem instances of relatively small size. Due to the known complexity, many researchers have proposed fast and efficient meta-heuristic solution procedures that can solve the problem to near optimality. Despite the excellent results obtained in the last decades, little is known why some heuristics perform better than others. However, if researchers better understood why some meta-heuristic procedures generate good solutions for some project instances while still falling short for others, this could lead to insights to improve these meta-heuristics, ultimately leading to stronger algorithms and better overall solution quality. In this study, a new hardness indicator is proposed to measure the difficulty of providing near-optimal solutions for meta-heuristic procedures. The new indicator is based on a new concept that uses the o-distance metric to describe the solution space of the problem instance, and relies on current knowledge for lower and upper bound calculations for problem instances from five known datasets in the literature. This new indicator, which will be called the o -D indicator, will be used not only to measure the hardness of existing project datasets, but also to generate a new benchmark dataset that can be used for future research purposes. The new dataset contains project instances with different values for the o -D indicator, and it will be shown that the value of the o-distance metric actually describes the difficulty of the project instances through two fast and efficient meta-heuristic procedures from the literature.

2023

Prototyping the IDS Security Components in the Context of Industry 4.0 - A Textile and Clothing Industry Case Study

Authors
Torres, N; Chaves, A; Toscano, C; Pinto, P;

Publication
Communications in Computer and Information Science

Abstract
With the introduction of Industry 4.0 technological concepts, suppliers and manufacturers envision new or improved products and services, cost reductions, and productivity gains. In this context, data exchanges between companies in the same or different activity sectors are necessary, while assuring data security and sovereignty. Thus, it is crucial to select and implement adequate standards which enable the interconnection requirements between companies and also feature security by design. The International Data Spaces (IDS) is a current standard that provides data sharing through data spaces mainly composed of homogeneous rules, certified data providers/consumers, and reliability between partners. Implementing IDS in sectors such as textile and clothing is expected to open new opportunities and challenges. This paper proposes a prototype for the IDS Security Components in the Textile and Clothing Industry context. This prototype assures data sovereignty and enables the interactions required by all participants in this supply chain industry using secure communications. The adoption of IDS as a base model in this activity sector fosters productive collaboration, lowers entry barriers for business partnerships, and enables an innovation environment. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

  • 9
  • 134