2022
Authors
Goncalves M.; Henriques A.; Costa A.R.; Correia D.; Severo M.; Severo M.; Lucas R.; Lucas R.; Barros H.; Santos A.C.; Ribeiro A.I.; Rocha A.; Lopes C.; Correia D.; Ramos E.; Gonçalves G.; Barros H.; Araújo J.; Talih M.; Tavares M.; Lunet N.; Meireles P.; Duarte R.; Camacho R.; Fraga S.; Correia S.; Silva S.; Leão T.;
Publication
SLEEP MEDICINE
Abstract
Objective/background: To describe and characterize insomnia symptoms and nightmare profiles in Portugal during the first six weeks of a national lockdown due to COVID-19. Patients/methods: An open cohort study was conducted to collect information of the general population during the first wave of SARS-CoV-2/COVID-19 pandemic in Portugal. We analyzed data from 5011 participants (>= 16 years) who answered a weekly questionnaire about their well-being. Two questions about the frequency of insomnia and nightmares about COVID-19 were consecutively applied during six weeks (March-May 2020). Latent class analysis was conducted and different insomnia and nightmare profiles were identified. Associations between individual characteristics and both profiles were estimated using odds ratios (ORs) and 95% confidence intervals (CI). Results: Five insomnia (No insomnia, Stable-mild, Decreasing-moderate, Stable-severe, Increasing-severe) and three nightmares profiles (Stable-mild, Stable-moderate, Stable-severe) were identified. Being female, younger, perceiving their income as insufficient and feelings of fear towards COVID-19 were associated with higher odds of insomnia (Women: OR = 6.98 95%CI: 4.18-11.64; >= 60 years: OR = 0.30 95%CI: 0.18-0.53; Insufficient income: adjusted OR (aOR) = 8.413 95% CI: 3.93-16.84; Often presenting fear of being infected with SARS-CoV-2 infection: aOR = 9.13 95%CI: 6.36-13.11), and nightmares (Women: OR = 2.60 95%CI: 1.74-3.86; >= 60 years: OR = 0.45 95%CI: 0.28-0.74; Insufficient income: aOR = 2.60 95%CI: 1.20e5.20; Often/almost always presenting fear of being infected with SARS-CoV-2 infection: aOR = 6.62 95%CI: 5.01-8.74). Having a diagnosis of SARS-CoV-2 virus infection was associated with worse patterns of nightmares about the pandemic. Conclusions: Social and psychological individual factors are important characteristics to consider in the developmentof therapeutic strategies to supportpeoplewithsleep problems during the COVID-19 pandemic.
2023
Authors
Leao, G; Camacho, R; Sousa, A; Veiga, G;
Publication
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 2
Abstract
Bin picking is a challenging problem that involves using a robotic manipulator to remove, one-by-one, a set of objects randomly stacked in a container. When the objects are prone to entanglement, having an estimation of their pose and shape is highly valuable for more reliable grasp and motion planning. This paper focuses on modeling entangled tubes with varying degrees of curvature. An unconventional machine learning technique, Inductive Logic Programming (ILP), is used to construct sets of rules (theories) capable of modeling multiple tubes when given the cylinders that constitute them. Datasets of entangled tubes are created via simulation in Gazebo. Experiments using Aleph and SWI-Prolog illustrate how ILP can build explainable theories with a high performance, using a relatively small dataset and low amount of time for training. Therefore, this work serves as a proof-of-concept that ILP is a valuable method to acquire knowledge and validate heuristics for pose and shape estimation in complex bin picking scenarios.
2015
Authors
Teixeira, D; Cruz, A; Bráz, S; Moreira, A; Relvas, J; Camacho, R;
Publication
Proceedings of the 30th Annual ACM Symposium on Applied Computing
Abstract
2023
Authors
Freitas, H; Camacho, R; Silva, DC;
Publication
Computational Science - ICCS 2023 - 23rd International Conference, Prague, Czech Republic, July 3-5, 2023, Proceedings, Part I
Abstract
2023
Authors
Mendes, D; Camacho, R;
Publication
BIOINFORMATICS AND BIOMEDICAL ENGINEERING, IWBBIO 2023, PT I
Abstract
This article reports on the development of a Web platform for the study of Adverse Drug Events (ADEs). The platform is able to import ADE episodes from official Web sites, like OpenFDA, analyse the chemistry of the drugs involved, together with patient data, and produce a potential explanation based on the drugs interactions. Each study uses chemical knowledge to enrich the information on the molecules involved in the episodes. Data Mining is then used to construct models that can help in the explanation of the ADE occurrence and to predict future events. This paper reports on the Web portal developed and the Data Mining experiments conducted to evaluate the quality, and potential explanations of the forecasted adverse reactions, using real reports of drug administration and the subsequent adverse events. The results showed that it was possible to predict the outcomes of ADEs based on the structure of the molecules of the drugs involved and the data collected from real reports of drug administration up to an accuracy of 79%, while also predicting, with high accuracy, the severity of events where the outcome is the death of the patient (with a precision of 98.9%). The platform provides a less expensive and more accurate way of predicting adverse drug reactions compared to traditional methods. This study highlights the importance of understanding drug interactions at a molecular level and the usefulness of utilising Data Mining techniques in predicting ADEs.
2004
Authors
Camacho, R; King, RD; Srinivasan, A;
Publication
ILP
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.