Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2024

Finding Patterns in Ambiguity: Interpretable Stress Testing in the Decision~Boundary

Authors
Gomes, I; Teixeira, LF; van Rijn, JN; Soares, C; Restivo, A; Cunha, L; Santos, M;

Publication
CoRR

Abstract

2024

Cherry-Picking in Time Series Forecasting: How to Select Datasets to Make Your Model Shine

Authors
Roque, L; Soares, C; Cerqueira, V; Torgo, L;

Publication
CoRR

Abstract

2024

Tabular data generation with tensor contraction layers and transformers

Authors
Silva, A; Restivo, A; Santos, M; Soares, C;

Publication
CoRR

Abstract

2024

Meta-TadGAN: Time Series Anomaly Detection Using TadGAN with Meta-features

Authors
Silva, IOe; Soares, C; Cerqueira, V; Rodrigues, A; Bastardo, P;

Publication
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part III

Abstract
TadGAN is a recent algorithm with competitive performance on time series anomaly detection. The detection process of TadGAN works by comparing observed data with generated data. A challenge in anomaly detection is that there are anomalies which are not easy to detect by analyzing the original time series but have a clear effect on its higher-order characteristics. We propose Meta-TadGAN, an adaptation of TadGAN that analyzes meta-level representations of time series. That is, it analyzes a time series that represents the characteristics of the time series, rather than the original time series itself. Results on benchmark datasets as well as real-world data from fire detectors shows that the new method is competitive with TadGAN. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

Classification of Pulmonary Nodules in 2-[<SUP>18</SUP>F]FDG PET/CT Images with a 3D Convolutional Neural Network

Authors
Alves, VM; Cardoso, JD; Gama, J;

Publication
NUCLEAR MEDICINE AND MOLECULAR IMAGING

Abstract
Purpose 2-[F-18]FDG PET/CT plays an important role in the management of pulmonary nodules. Convolutional neural networks (CNNs) automatically learn features from images and have the potential to improve the discrimination between malignant and benign pulmonary nodules. The purpose of this study was to develop and validate a CNN model for classification of pulmonary nodules from 2-[F-18]FDG PET images.Methods One hundred thirteen participants were retrospectively selected. One nodule per participant. The 2-[F-18]FDG PET images were preprocessed and annotated with the reference standard. The deep learning experiment entailed random data splitting in five sets. A test set was held out for evaluation of the final model. Four-fold cross-validation was performed from the remaining sets for training and evaluating a set of candidate models and for selecting the final model. Models of three types of 3D CNNs architectures were trained from random weight initialization (Stacked 3D CNN, VGG-like and Inception-v2-like models) both in original and augmented datasets. Transfer learning, from ImageNet with ResNet-50, was also used.Results The final model (Stacked 3D CNN model) obtained an area under the ROC curve of 0.8385 (95% CI: 0.6455-1.0000) in the test set. The model had a sensibility of 80.00%, a specificity of 69.23% and an accuracy of 73.91%, in the test set, for an optimised decision threshold that assigns a higher cost to false negatives.Conclusion A 3D CNN model was effective at distinguishing benign from malignant pulmonary nodules in 2-[F-18]FDG PET images.

2024

Forecasting financial market structure from network features using machine learning

Authors
Castilho, D; Souza, TTP; Kang, SM; Gama, J; de Carvalho, ACPLF;

Publication
KNOWLEDGE AND INFORMATION SYSTEMS

Abstract
We propose a model that forecasts market correlation structure from link- and node-based financial network features using machine learning. For such, market structure is modeled as a dynamic asset network by quantifying time-dependent co-movement of asset price returns across company constituents of major global market indices. We provide empirical evidence using three different network filtering methods to estimate market structure, namely Dynamic Asset Graph, Dynamic Minimal Spanning Tree and Dynamic Threshold Networks. Experimental results show that the proposed model can forecast market structure with high predictive performance with up to 40%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$40\%$$\end{document} improvement over a time-invariant correlation-based benchmark. Non-pair-wise correlation features showed to be important compared to traditionally used pair-wise correlation measures for all markets studied, particularly in the long-term forecasting of stock market structure. Evidence is provided for stock constituents of the DAX30, EUROSTOXX50, FTSE100, HANGSENG50, NASDAQ100 and NIFTY50 market indices. Findings can be useful to improve portfolio selection and risk management methods, which commonly rely on a backward-looking covariance matrix to estimate portfolio risk.

  • 12
  • 466