2024
Authors
Ramirez, JM; Ribeiro, R; Soldatkina, O; Moraes, A; García-Pérez, R; Ferreira, PG; Melé, M;
Publication
Abstract
2024
Authors
Sousa, B; Bessa, M; de Mendonca, FL; Ferreira, PG; Moreira, A; Pereira-Castro, I;
Publication
BIOINFORMATICS
Abstract
APAtizer is a tool designed to analyze alternative polyadenylation events on RNA-sequencing data. The tool handles different file formats, including BAM, htseq, and DaPars bedGraph files. It provides a user-friendly interface that allows users to generate informative visualizations, including Volcano plots, heatmaps, and gene lists. These outputs allow the user to retrieve useful biological insights such as the occurrence of polyadenylation events when comparing two biological conditions. In addition, it can perform differential gene expression, gene ontology analysis, visualization of Venn diagram intersections, and correlation analysis.
2024
Authors
Juliana Machado; Evelin Amorim;
Publication
Anais do XXXIX Simpósio Brasileiro de Banco de Dados (SBBD 2024)
Abstract
2024
Authors
Tomaszewska, A; Silvano, P; Leal, A; Amorim, E;
Publication
ISA 2024: 20th Joint ACL - ISO Workshop on Interoperable Semantic Annotation at LREC-COLING 2024, Workshop Proceedings
Abstract
The main objective of this study is to contribute to multilingual discourse research by employing ISO-24617 Part 8 (Semantic Relations in Discourse, Core Annotation Schema – DR-core) for annotating discourse relations. Centering around a parallel discourse relations corpus that includes English, Polish, and European Portuguese, we initiate one of the few ISO-based comparative analyses through a multilingual corpus that aligns discourse relations across these languages. In this paper, we discuss the project’s contributions, including the annotated corpus, research findings, and statistics related to the use of discourse relations. The paper further discusses the challenges encountered in complying with the ISO standard, such as defining the scope of arguments and annotating specific relation types like Expansion. Our findings highlight the necessity for clearer definitions of certain discourse relations and more precise guidelines for argument spans, especially concerning the inclusion of connectives. Additionally, the study underscores the importance of ongoing collaborative efforts to broaden the inclusion of languages and more comprehensive datasets, with the objective of widening the reach of ISO-guided multilingual discourse research. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
2024
Authors
Almeida, R; Amorim, E;
Publication
Legal and Ethical Issues in Human Language Technologies 2024, LEGAL 2024 at LREC-COLING 2024 - Workshop Proceedings
Abstract
Recent advances in deep learning have promoted the advent of many computational systems capable of performing intelligent actions that, until then, were restricted to the human intellect. In the particular case of human languages, these advances allowed the introduction of applications like ChatGPT that are capable of generating coherent text without being explicitly programmed to do so. Instead, these models use large volumes of textual data to learn meaningful representations of human languages. Associated with these advances, concerns about copyright and data privacy infringements caused by these applications have emerged. Despite these concerns, the pace at which new natural language processing applications continued to be developed largely outperformed the introduction of new regulations. Today, communication barriers between legal experts and computer scientists motivate many unintentional legal infringements during the development of such applications. In this paper, a multidisciplinary team intends to bridge this communication gap and promote more compliant Portuguese NLP research by presenting a series of everyday NLP use cases, while highlighting the Portuguese legislation that may arise during its development. © 2024 ELRA Language Resource Association.
2024
Authors
da Silva, JP; Nogueira, AR; Pinto, J; Curral, M; Alves, AC; Sousa, R;
Publication
EXPERT SYSTEMS
Abstract
Integrating Industry 4.0 and Quality 4.0 optimises manufacturing through IoT and ML, improving processes and product quality. The primary challenge involves identifying patterns in computer numerical control (CNC) machining time-series data to boost manufacturing quality control. The proposed solution involves an experimental study comparing one-class and binary classification algorithms. This study aims to classify time-series data from CNC turning machines, offering insight into monitoring and adjusting tool wear to maintain product quality. The methodology entails extracting spectral features from time-series data to train both one-class and binary classification algorithms, assessing their effectiveness and computational efficiency. Although certain models consistently outperform others, determining the best performing is not possible, as a trade-off between classification and computational performance is observed, with gradient boosting standing out for effectively balancing both aspects. Thus, the choice between one-class and binary classification ultimately relies on dataset's features and task objectives.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.