2024
Authors
Silva, CC; Brito, P; Campos, P;
Publication
Statistical Journal of the IAOS
Abstract
2024
Authors
Verde R.; Batagelj V.; Brito P.; Silva A.P.D.; Korenjak-Cerne S.; Dobša J.; Diday E.;
Publication
Statistical Journal of the IAOS
Abstract
The paper draws attention to the use of Symbolic Data Analysis (SDA) in the field of Official Statistics. It is composed of three sections presenting three pilot techniques in the field of SDA. The three contributions range from a technique based on the notion of exactly unified summaries for the creation of symbolic objects, a model-based approach for interval data as an innovative parametric strategy in this context, and measures of similarity defined between a class and a collection of classes based on the frequency of the categories which characterize them. The paper shows the effectiveness of the proposed approaches as prototypes of numerous techniques developed within the SDA framework and opens to possible further developments.
2024
Authors
Brito, P; Cerioli, A; Garcia-Escudero, LA; Saporta, G;
Publication
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION
Abstract
[No abstract available]
2024
Authors
Ribeiro, J; Fontes, T; Soares, C; Borges, JL;
Publication
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
Subgroup discovery (SD) aims at finding significant subgroups of a given population of individuals characterized by statistically unusual properties of interest. SD on event logs provides insight into particular behaviors of processes, which may be a valuable complement to the traditional process analysis techniques, especially for low -structured processes. This paper proposes a scalable and efficient method to search significant SD rules on frequent sequences of events, exploiting their multidimensional nature. With this method, it is intended to identify significant subsequences of events where the distribution of values of some target aspect is significantly different than the same distribution for the entire event log. A publicly available real -life event log of a Dutch hospital is used as a running example to demonstrate the applicability of our method. The proposed approach was applied on a real -life case study based on the public transport of a medium size European city (Porto, Portugal), for which the event data consists of 133 million smartcard travel validations from buses, trams and trains. The results include a characterization of mobility flows over multiple aspects, as well as the identification of unexpected behaviors in the flow of commuters (public transport). The generated knowledge provided a useful insight into the behavior of travelers, which can be applied at operational, tactical and strategic business levels, enhancing the current view of the transport services to transport authorities and operators.
2024
Authors
Cerqueira, V; Moniz, N; Soares, C;
Publication
MACHINE LEARNING
Abstract
Time series forecasting is a challenging task with applications in a wide range of domains. Auto-regression is one of the most common approaches to address these problems. Accordingly, observations are modelled by multiple regression using their past lags as predictor variables. We investigate the extension of auto-regressive processes using statistics which summarise the recent past dynamics of time series. The result of our research is a novel framework called VEST, designed to perform feature engineering using univariate and numeric time series automatically. The proposed approach works in three main steps. First, recent observations are mapped onto different representations. Second, each representation is summarised by statistical functions. Finally, a filter is applied for feature selection. We discovered that combining the features generated by VEST with auto-regression significantly improves forecasting performance in a database composed by 90 time series with high sampling frequency. However, we also found that there are no improvements when the framework is applied for multi-step forecasting or in time series with low sample size. VEST is publicly available online.
2024
Authors
Silva, IOE; Soares, C; Sousa, I; Ghani, R;
Publication
ADVANCES IN ARTIFICIAL INTELLIGENCE, AI 2023, PT II
Abstract
Arbitrary, inconsistent, or faulty decision-making raises serious concerns, and preventing unfair models is an increasingly important challenge in Machine Learning. Data often reflect past discriminatory behavior, and models trained on such data may reflect bias on sensitive attributes, such as gender, race, or age. One approach to developing fair models is to preprocess the training data to remove the underlying biases while preserving the relevant information, for example, by correcting biased labels. While multiple label noise correction methods are available, the information about their behavior in identifying discrimination is very limited. In this work, we develop an empirical methodology to systematically evaluate the effectiveness of label noise correction techniques in ensuring the fairness of models trained on biased datasets. Our methodology involves manipulating the amount of label noise and can be used with fairness benchmarks but also with standard ML datasets. We apply the methodology to analyze six label noise correction methods according to several fairness metrics on standard OpenML datasets. Our results suggest that the Hybrid Label Noise Correction [20] method achieves the best trade-off between predictive performance and fairness. Clustering-Based Correction [14] can reduce discrimination the most, however, at the cost of lower predictive performance.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.