Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2024

Towards Evaluation of Explainable Artificial Intelligence in Streaming Data

Authors
Mozolewski, M; Bobek, S; Ribeiro, RP; Nalepa, GJ; Gama, J;

Publication
EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2024, PT IV

Abstract
This study introduces a method to assess the quality of Explainable Artificial Intelligence (XAI) algorithms in dynamic data streams, concentrating on the fidelity and stability of feature-importance and rule-based explanations. We employ XAI metrics, such as fidelity and Lipschitz Stability, to compare explainers between each other and introduce the Comparative Expert Stability Index (CESI) for benchmarking explainers against domain knowledge. We adopted the aforementioned metrics to the streaming data scenario and tested them in an unsupervised classification scenario with simulated distribution shifts as different classes. The necessity for adaptable explainers in complex scenarios, like failure detection is underscored, stressing the importance of continued research into versatile explanation techniques to enhance XAI system robustness and interpretability.

2024

More (Enough) Is Better: Towards Few-Shot Illegal Landfill Waste Segmentation

Authors
Molina, M; Veloso, B; Ferreira, CA; Ribeiro, RP; Gama, J;

Publication
ECAI 2024 - 27th European Conference on Artificial Intelligence, 19-24 October 2024, Santiago de Compostela, Spain - Including 13th Conference on Prestigious Applications of Intelligent Systems (PAIS 2024)

Abstract
Image segmentation for detecting illegal landfill waste in aerial images is essential for environmental crime monitoring. Despite advancements in segmentation models, the primary challenge in this domain is the lack of annotated data due to the unknown locations of illegal waste disposals. This work mainly focuses on evaluating segmentation models for identifying individual illegal landfill waste segments using limited annotations. This research seeks to lay the groundwork for a comprehensive model evaluation to contribute to environmental crime monitoring and sustainability efforts by proposing to harness the combination of agnostic segmentation and supervised classification approaches. We mainly explore different metrics and combinations to better understand how to measure the quality of this applied segmentation problem. © 2024 The Authors.

2024

Artificial Intelligence Approaches for Predictive Maintenance in the Steel Industry: A Survey

Authors
Jakubowski, J; Strzelecka, NW; Ribeiro, RP; Pashami, S; Bobek, S; Gama, J; Nalepa, GJ;

Publication
CoRR

Abstract

2024

Aequitas Flow: Streamlining Fair ML Experimentation

Authors
Jesus, SM; Saleiro, P; Silva, IOe; Jorge, BM; Ribeiro, RP; Gama, J; Bizarro, P; Ghani, R;

Publication
CoRR

Abstract

2024

Predictive Maintenance for Industry 4.0 & 5.0

Authors
Ribeiro, RP;

Publication
Proceedings of the 1st International Conference on Explainable AI for Neural and Symbolic Methods, EXPLAINS 2024, Porto, Portugal, November 20-22, 2024.

Abstract

2024

Community detection in interval-weighted networks

Authors
Alves, H; Brito, P; Campos, P;

Publication
DATA MINING AND KNOWLEDGE DISCOVERY

Abstract
In this paper we introduce and develop the concept of interval-weighted networks (IWN), a novel approach in Social Network Analysis, where the edge weights are represented by closed intervals composed with precise information, comprehending intrinsic variability. We extend IWN for both Newman's modularity and modularity gain and the Louvain algorithm, considering a tabular representation of networks by contingency tables. We apply our methodology to two real-world IWN. The first is a commuter network in mainland Portugal, between the twenty three NUTS 3 Regions (IWCN). The second focuses on annual merchandise trade between 28 European countries, from 2003 to 2015 (IWTN). The optimal partition of geographic locations (regions or countries) is developed and compared using two new different approaches, designated as Classic Louvain and Hybrid Louvain , which allow taking into account the variability observed in the original network, thereby minimizing the loss of information present in the raw data. Our findings suggest the division of the twenty three Portuguese regions in three main communities for the IWCN and between two to three country communities for the IWTN. However, we find different geographical partitions according to the community detection methodology used. This analysis can be useful in many real-world applications, since it takes into account that the weights may vary within the ranges, rather than being constant.

  • 7
  • 466