2024
Authors
Baghoussi, Y; Soares, C; Moreira, JM;
Publication
Neural Comput. Appl.
Abstract
Traditional recurrent neural networks (RNNs) are essential for processing time-series data. However, they function as read-only models, lacking the ability to directly modify the data they learn from. In this study, we introduce the corrector long short-term memory (cLSTM), a Read & Write LSTM architecture that not only learns from the data but also dynamically adjusts it when necessary. The cLSTM model leverages two key components: (a) predicting LSTM’s cell states using Seasonal Autoregressive Integrated Moving Average (SARIMA) and (b) refining the training data based on discrepancies between actual and forecasted cell states. Our empirical validation demonstrates that cLSTM surpasses read-only LSTM models in forecasting accuracy across the Numenta Anomaly Benchmark (NAB) and M4 Competition datasets. Additionally, cLSTM exhibits superior performance in anomaly detection compared to hierarchical temporal memory (HTM) models. © The Author(s) 2024.
2024
Authors
Roque, L; Soares, C; Torgo, L;
Publication
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024, Barcelona, Spain, August 25-29, 2024
Abstract
We introduce the Robustness of Hierarchically Organized Time Series (RHiOTS) framework, designed to assess the robustness of hierarchical time series forecasting models and algorithms on real-world datasets. Hierarchical time series, where lower-level forecasts must sum to upper-level ones, are prevalent in various contexts, such as retail sales across countries. Current empirical evaluations of forecasting methods are often limited to a small set of benchmark datasets, offering a narrow view of algorithm behavior. RHiOTS addresses this gap by systematically altering existing datasets and modifying the characteristics of individual series and their interrelations. It uses a set of parameterizable transformations to simulate those changes in the data distribution. Additionally, RHiOTS incorporates an innovative visualization component, turning complex, multidimensional robustness evaluation results into intuitive, easily interpretable visuals. This approach allows an in-depth analysis of algorithm and model behavior under diverse conditions. We illustrate the use of RHiOTS by analyzing the predictive performance of several algorithms. Our findings show that traditional statistical methods are more robust than state-of-the-art deep learning algorithms, except when the transformation effect is highly disruptive. Furthermore, we found no significant differences in the robustness of the algorithms when applying specific reconciliation methods, such as MinT. RHiOTS provides researchers with a comprehensive tool for understanding the nuanced behavior of forecasting algorithms, offering a more reliable basis for selecting the most appropriate method for a given problem. © 2024 Copyright held by the owner/author(s).
2024
Authors
Baghcheband, H; Soares, C; Reis, LP;
Publication
IEEE INTERNET COMPUTING
Abstract
Today, autonomous agents, the Internet of Things, and smart devices produce more and more distributed data and use them to learn models for different purposes. One challenge is that learning from local data only may lead to suboptimal models. Thus, better models are expected if agents can exchange data, leading to approaches such as federated learning. However, these approaches assume that data have no value and, thus, is exchanged for free. A machine learning data market (MLDM), a framework based on multiagent systems with a market-based perspective on data exchange, was recently proposed. In an MLDM, each agent trains its model based on both local data and data bought from other agents. Although the empirical results are interesting, several challenges are still open, including data acquisition and data valuation. The MLDM is an illustrative example of how the value of data can and should be integrated into the design of distributed ML systems.
2024
Authors
Martins, L; Bravo, J; Gomes, AS; Soares, C; Bizarro, P;
Publication
RULES AND REASONING, RULEML+RR 2024
Abstract
Financial fraud is the cause of multi-billion dollar losses annually. Traditionally, fraud detection systems rely on rules due to their transparency and interpretability, key features in domains where decisions need to be explained. However, rule systems require significant input from domain experts to create and tune, an issue that rule induction algorithms attempt to mitigate by inferring rules directly from data. We explore the application of these algorithms to fraud detection, where rule systems are constrained to have a low false positive rate (FPR) or alert rate, by proposing RIFF, a rule induction algorithm that distills a low FPR rule set directly from decision trees. Our experiments show that the induced rules are often able to maintain or improve performance of the original models for low FPR tasks, while substantially reducing their complexity and outperforming rules hand-tuned by experts.
2024
Authors
Leites, J; Cerqueira, V; Soares, C;
Publication
CoRR
Abstract
Most forecasting methods use recent past observations (lags) to model the future values of univariate time series. Selecting an adequate number of lags is important for training accurate forecasting models. Several approaches and heuristics have been devised to solve this task. However, there is no consensus about what the best approach is. Besides, lag selection procedures have been developed based on local models and classical forecasting techniques such as ARIMA. We bridge this gap in the literature by carrying out an extensive empirical analysis of different lag selection methods. We focus on deep learning methods trained in a global approach, i.e., on datasets comprising multiple univariate time series. Specifically, we use NHITS, a recently proposed architecture that has shown competitive forecasting performance. The experiments were carried out using three benchmark databases that contain a total of 2411 univariate time series. The results indicate that the lag size is a relevant parameter for accurate forecasts. In particular, excessively small or excessively large lag sizes have a considerable negative impact on forecasting performance. Cross-validation approaches show the best performance for lag selection, but this performance is comparable with simple heuristics. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2024
Authors
Santos, M; de Carvalho, ACPLF; Soares, C;
Publication
Proceedings of the 2nd Workshop on Fairness and Bias in AI co-located with 27th European Conference on Artificial Intelligence (ECAI 2024), Santiago de Compostela, Spain, October 20th, 2024.
Abstract
When never produced as much data as today, and tomorrow will probably produce even more data. The increase is due not only to the larger number of data sources, but also because the source can continuously produce more recent data. The discovery of temporal patterns in continuously generated data is the main goal in many forecasting tasks, such as the average value of a currency or the average temperature in a city, in the next day. In these tasks, it is assumed that the time difference between two consecutive values produced by the same source is constant, and the sequence of values form a time series. The importance, and the very large number, of time series forecasting tasks make them one of the most popular data analysis application, which has been dealt with by a large number of different methods. Despite its popularity, there is a dearth of research aimed at comprehending the conditions under which these methods present high or poor forecasting performances. Empirical studies, although common, are challenged by the limited availability of time series datasets, restricting the extraction of reliable insights. To address this limitation, we present tsMorph, a tool for generating semi-synthetic time series through dataset morphing. tsMorph works by creating a sequence of datasets from two original datasets. The characteristics of the generated datasets progressively depart from those of one of the datasets and a convergence toward the attributes of the other dataset. This method provides a valuable alternative for obtaining substantial datasets. In this paper, we show the benefits of tsMorph by assessing the predictive performance of the Long Short-Term Memory Network and DeepAR forecasting algorithms. The time series used for the experiments come from the NN5 Competition. The experimental results provide important insights. Notably, the performances of the two algorithms improve proportionally with the frequency of the time series. These experiments confirm that tsMorph can be an effective tool for better understanding the behaviour of forecasting algorithms, delivering a pathway to overcoming the limitations posed by empirical studies and enabling more extensive and reliable experiments. Furthermore, tsMorph can promote Responsible Artificial Intelligence by emphasising characteristics of time series where forecasting algorithms may not perform well, thereby highlighting potential limitations. © 2024 Copyright for this paper by its authors.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.