2025
Authors
Brito, P; Silva, APD;
Publication
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION
Abstract
We present parametric probabilistic models for numerical distributional variables. The proposed models are based on the representation of each distribution by a location measure and inter-quantile ranges, for given quantiles, thereby characterizing the underlying empirical distributions in a flexible way. Multivariate Normal distributions are assumed for the whole set of indicators, considering alternative structures of the variance-covariance matrix. For all cases, maximum likelihood estimators of the corresponding parameters are derived. This modelling allows for hypothesis testing and multivariate parametric analysis. The proposed framework is applied to Analysis of Variance and parametric Discriminant Analysis of distributional data. A simulation study examines the performance of the proposed models in classification problems under different data conditions. Applications to Internet traffic data and Portuguese official data illustrate the relevance of the proposed approach.
2025
Authors
Strecht, P; Mendes-Moreira, J; Soares, C;
Publication
Lecture Notes in Computer Science - Machine Learning, Optimization, and Data Science
Abstract
2025
Authors
Zafra, A; Veloso, B; Gama, J;
Publication
HYBRID ARTIFICIAL INTELLIGENT SYSTEM, PT I, HAIS 2024
Abstract
Early identification of failures is a critical task in predictive maintenance, preventing potential problems before they manifest and resulting in substantial time and cost savings for industries. We propose an approach that predicts failures in the near future. First, a deep learning model combining long short-term memory and convolutional neural network architectures predicts signals for a future time horizon using real-time data. In the second step, an autoencoder based on convolutional neural networks detects anomalies in these predicted signals. Finally, a verification step ensures that a fault is considered reliable only if it is corroborated by anomalies in multiple signals simultaneously. We validate our approach using publicly available Air Production Unit (APU) data from Porto metro trains. Two significant conclusions emerge from our study. Firstly, experimental results confirm the effectiveness of our approach, demonstrating a high fault detection rate and a reduced number of false positives. Secondly, the adaptability of this proposal allows for the customization of configuration of different time horizons and relationship between the signals to meet specific detection requirements.
2025
Authors
Rajaoarisoa, LH; Randrianandraina, R; Nalepa, GJ; Gama, J;
Publication
Eng. Appl. Artif. Intell.
Abstract
To maintain the performance of the latest generation of onshore and offshore wind turbine systems, a new methodology must be proposed to enhance the maintenance policy. In this context, this paper introduces an approach to designing a decision support tool that combines predictive capabilities with anomaly explanations for effective IoT predictive maintenance tasks. Essentially, the paper proposes an approach that integrates a predictive maintenance model with an explicative decision-making system. The key challenge is to detect anomalies and provide plausible explanations, enabling human operators to determine the necessary actions swiftly. To achieve this, the proposed approach identifies a minimal set of relevant features required to generate rules that explain the root causes of issues in the physical system. It estimates that certain features, such as the active power generator, blade pitch angle, and the average water temperature of the voltage circuit protection in the generator's sub-components, are particularly critical to monitor. Additionally, the approach simplifies the computation of an efficient predictive maintenance model. Compared to other deep learning models, the identified model provides up to 80% accuracy in anomaly detection and up to 96% for predicting the remaining useful life of the system under study. These performance metrics and indicators values are essential for enhancing the decision-making process. Moreover, the proposed decision support tool elucidates the onset of degradation and its dynamic evolution based on expert knowledge and data gathered through Internet of Things (IoT) technology and inspection reports. Thus, the developed approach should aid maintenance managers in making accurate decisions regarding inspection, replacement, and repair tasks. The methodology is demonstrated using a wind farm dataset provided by Energias De Portugal. © 2024
2025
Authors
Ferreira, S; Rodrigues, MA; Mateus, C; Rodrigues, PP; Rocha, NB;
Publication
Abstract In modern, high-speed work settings, the significance of mental health disorders is increasingly acknowledged as a pressing health issue, with potential adverse consequences for organizations, including reduced productivity and increased absenteeism. Over the past few years, various mental health management solutions, such as biofeedback applications, have surfaced as promising avenues to improve employees' mental well-being. To gain deeper insights into the suitability and effectiveness of employing biofeedback-based mental health interventions in real-world workplace settings, given that most research has predominantly been conducted within controlled laboratory conditions. A systematic review was conducted to identify studies that used biofeedback interventions in workplace settings. The review focused on traditional biofeedback, mindfulness, app-directed interventions, immersive scenarios, and in-depth physiological data presentation. The review identified nine studies employing biofeedback interventions in the workplace. Breathing techniques showed great promise in decreasing stress and physiological parameters, especially when coupled with visual and/or auditory cues. Future research should focus on developing and implementing interventions to improve well-being and mental health in the workplace, with the goal of creating safer and healthier work environments and contributing to the sustainability of organizations.
2025
Authors
Kumar, R; Bhanu, M; Mendes-moreira, J; Chandra, J;
Publication
ACM COMPUTING SURVEYS
Abstract
Spatio-temporal prediction tasks play a crucial role in facilitating informed decision-making through anticipatory insights. By accurately predicting future outcomes, the ability to strategize, preemptively address risks, and minimize their potential impact is enhanced. The precision in forecasting spatial and temporal patterns holds significant potential for optimizing resource allocation, land utilization, and infrastructure development. While existing review and survey papers predominantly focus on specific forecasting domains such as intelligent transportation, urban planning, pandemics, disease prediction, climate and weather forecasting, environmental data prediction, and agricultural yield projection, limited attention has been devoted to comprehensive surveys encompassing multiple objects concurrently. This article addresses this gap by comprehensively analyzing techniques employed in traffic, pandemics, disease forecasting, climate and weather prediction, agricultural yield estimation, and environmental data prediction. Furthermore, it elucidates challenges inherent in spatio-temporal forecasting and outlines potential avenues for future research exploration.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.