Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Filipe Neves Santos

2024

YOLO-Based Tree Trunk Types Multispectral Perception: A Two-Genus Study at Stand-Level for Forestry Inventory Management Purposes

Authors
da Silva, DQ; Dos Santos, FN; Filipe, V; Sousa, AJ; Pires, EJS;

Publication
IEEE ACCESS

Abstract
Stand-level forest tree species perception and identification are needed for monitoring-related operations, being crucial for better biodiversity and inventory management in forested areas. This paper contributes to this knowledge domain by researching tree trunk types multispectral perception at stand-level. YOLOv5 and YOLOv8 - Convolutional Neural Networks specialized at object detection and segmentation - were trained to detect and segment two tree trunk genus (pine and eucalyptus) using datasets collected in a forest region in Portugal. The dataset comprises only two categories, which correspond to the two tree genus. The datasets were manually annotated for object detection and segmentation with RGB and RGB-NIR images, and are publicly available. The Small variant of YOLOv8 was the best model at detection and segmentation tasks, achieving an F1 measure above 87% and 62%, respectively. The findings of this study suggest that the use of extended spectra, including Visible and Near Infrared, produces superior results. The trained models can be integrated into forest tractors and robots to monitor forest genus across different spectra. This can assist forest managers in controlling their forest stands.

2024

MonoVisual3DFilter: 3D tomatoes' localisation with monocular cameras using histogram filters

Authors
Magalhaes, SAC; dos Santos, FN; Moreira, AP; Dias, JMM;

Publication
ROBOTICA

Abstract
Performing tasks in agriculture, such as fruit monitoring or harvesting, requires perceiving the objects' spatial position. RGB-D cameras are limited under open-field environments due to lightning interferences. So, in this study, we state to answer the research question: How can we use and control monocular sensors to perceive objects' position in the 3D task space? Towards this aim, we approached histogram filters (Bayesian discrete filters) to estimate the position of tomatoes in the tomato plant through the algorithm MonoVisual3DFilter. Two kernel filters were studied: the square kernel and the Gaussian kernel. The implemented algorithm was essayed in simulation, with and without Gaussian noise and random noise, and in a testbed at laboratory conditions. The algorithm reported a mean absolute error lower than 10 mm in simulation and 20 mm in the testbed at laboratory conditions with an assessing distance of about 0.5 m. So, the results are viable for real environments and should be improved at closer distances.

2024

Towards On-Site Dairy Cow Mastitis Diagnosis in Your Pocket

Authors
Costa, A; Pereira, A; Pinho, L; Gregório, H; Santos, F; Moura, P; Marcos, R; Martins, RC;

Publication
The 4th International Electronic Conference on Biosensors

Abstract

2024

Enhancing Grapevine Node Detection to Support Pruning Automation: Leveraging State-of-the-Art YOLO Detection Models for 2D Image Analysis

Authors
Oliveira, F; da Silva, DQ; Filipe, V; Pinho, TM; Cunha, M; Cunha, JB; dos Santos, FN;

Publication
SENSORS

Abstract
Automating pruning tasks entails overcoming several challenges, encompassing not only robotic manipulation but also environment perception and detection. To achieve efficient pruning, robotic systems must accurately identify the correct cutting points. A possible method to define these points is to choose the cutting location based on the number of nodes present on the targeted cane. For this purpose, in grapevine pruning, it is required to correctly identify the nodes present on the primary canes of the grapevines. In this paper, a novel method of node detection in grapevines is proposed with four distinct state-of-the-art versions of the YOLO detection model: YOLOv7, YOLOv8, YOLOv9 and YOLOv10. These models were trained on a public dataset with images containing artificial backgrounds and afterwards validated on different cultivars of grapevines from two distinct Portuguese viticulture regions with cluttered backgrounds. This allowed us to evaluate the robustness of the algorithms on the detection of nodes in diverse environments, compare the performance of the YOLO models used, as well as create a publicly available dataset of grapevines obtained in Portuguese vineyards for node detection. Overall, all used models were capable of achieving correct node detection in images of grapevines from the three distinct datasets. Considering the trade-off between accuracy and inference speed, the YOLOv7 model demonstrated to be the most robust in detecting nodes in 2D images of grapevines, achieving F1-Score values between 70% and 86.5% with inference times of around 89 ms for an input size of 1280 x 1280 px. Considering these results, this work contributes with an efficient approach for real-time node detection for further implementation on an autonomous robotic pruning system.

2024

Deep learning based approach for actinidia flower detection and gender assessment

Authors
Pinheiro, I; Moreira, G; Magalhaes, S; Valente, A; Cunha, M; dos Santos, FN;

Publication
SCIENTIFIC REPORTS

Abstract
Pollination is critical for crop development, especially those essential for subsistence. This study addresses the pollination challenges faced by Actinidia, a dioecious plant characterized by female and male flowers on separate plants. Despite the high protein content of pollen, the absence of nectar in kiwifruit flowers poses difficulties in attracting pollinators. Consequently, there is a growing interest in using artificial intelligence and robotic solutions to enable pollination even in unfavourable conditions. These robotic solutions must be able to accurately detect flowers and discern their genders for precise pollination operations. Specifically, upon identifying female Actinidia flowers, the robotic system should approach the stigma to release pollen, while male Actinidia flowers should target the anthers to collect pollen. We identified two primary research gaps: (1) the lack of gender-based flower detection methods and (2) the underutilisation of contemporary deep learning models in this domain. To address these gaps, we evaluated the performance of four pretrained models (YOLOv8, YOLOv5, RT-DETR and DETR) in detecting and determining the gender of Actinidia flowers. We outlined a comprehensive methodology and developed a dataset of manually annotated flowers categorized into two classes based on gender. Our evaluation utilised k-fold cross-validation to rigorously test model performance across diverse subsets of the dataset, addressing the limitations of conventional data splitting methods. DETR provided the most balanced overall performance, achieving precision, recall, F1 score and mAP of 89%, 97%, 93% and 94%, respectively, highlighting its robustness in managing complex detection tasks under varying conditions. These findings underscore the potential of deep learning models for effective gender-specific detection of Actinidia flowers, paving the way for advanced robotic pollination systems.

2024

Pruning End-Effectors State of the Art Review

Authors
Oliveira, F; Tinoco, V; Valente, A; Pinho, TM; Cunha, JB; Santos, F;

Publication
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part I

Abstract
Pruning consists on an agricultural trimming procedure that is crucial in some species of plants to promote healthy growth and increased yield. Generally, this task is done through manual labour, which is costly, physically demanding, and potentially dangerous for the worker. Robotic pruning is an automated alternative approach to manual labour on this task. This approach focuses on selective pruning and requires the existence of an end-effector capable of detecting and cutting the correct point on the branch to achieve efficient pruning. This paper reviews and analyses different end-effectors used in robotic pruning, which helped to understand the advantages and limitations of the different techniques used and, subsequently, clarified the work required to enable autonomous pruning. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

  • 21
  • 22