The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Abstract Most human time is spent indoors, and due to the pandemic, monitoring indoor air quality (IAQ) has become more crucial. In this study, an IoT (Internet of Things) architecture is implemented to monitor IAQ parameters, including CO2 and particulate matter (PM). An ESP32-C6-based device is developed to measure sensor data and send them, using the MQTT protocol, to a remote InfluxDBv2 database instance, where the data are stored and visualized. The Python 3.11 scripting programming language is used to automate Flux queries to the database, allowing a more in-depth data interpretation. The implemented system allows to analyze two measured scenarios during sleep: one with the door slightly open and one with the door closed. Results indicate that sleeping with the door slightly open causes CO2 levels to ascend slowly and maintain lower concentrations compared to sleeping with the door closed, where CO2 levels ascend faster and the maximum recommended values are exceeded. This demonstrates the benefits of ventilation in maintaining IAQ. The developed system can be used for sensing in different environments, such as schools or offices, so an IAQ assessment can be made. Based on the generated data, predictive models can be designed to support decisions on intelligent natural ventilation systems, achieving an optimized, efficient, and ubiquitous solution to moderate the IAQ.
It is one of the institution’s most important communication tools, featuring news and articles about the science and technology made by INESC TEC, always with an informal, light, fresh and yet authentic and educational tone. It is not politically correct, nor does it intend to be the voice of the Board of Directors.