The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Abstract To achieve lower switching losses and higher frequency capabilities in converter design, researchers worldwide have been investigating Silicon carbide (SiC) modules and MOSFETs. In power electronics, wide bandgap devices such as Silicon carbide are essential for creating more efficient, higher-density, and higher-power-rated converters. Devices like SiC and Gallium nitride (GaN) offer numerous advantages in power electronics, particularly by influencing parasitic capacitance and inductance in printed circuit boards (PCBs). A review paper on Silicon carbide converter designs using coupled inductors provides a comprehensive analysis of the advancements in SiC-based power converter technologies. Over the past decade, SiC converter designs have demonstrated both efficiency and reliability, underscoring significant improvements in performance and design methodologies over time. This review paper examines developments in Silicon carbide converter design from 2014 to 2024, with a focus on the research conducted in the past ten years. It highlights the advantages of SiC technology, techniques for constructing converters, and the impact on other components. Additionally, a bibliometric analysis of prior studies has been conducted, with a particular focus on strategies to minimize switching losses, as discussed in the reviewed articles.
It is one of the institution’s most important communication tools, featuring news and articles about the science and technology made by INESC TEC, always with an informal, light, fresh and yet authentic and educational tone. It is not politically correct, nor does it intend to be the voice of the Board of Directors.