Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Benedita Malheiro

2021

The MopBot Cleaning Robot - An EPS@ISEP 2020 Project

Authors
Tuluc, C; Verberne, F; Lasota, S; de Almeida, T; Malheiro, B; Justo, J; Ribeiro, C; Silva, MF; Ferreira, P; Guedes, P;

Publication
EDUCATING ENGINEERS FOR FUTURE INDUSTRIAL REVOLUTIONS, ICL2020, VOL 1

Abstract
Waste is one of the biggest problems on Earth today. In the spring of 2020, a team of students enrolled in the European Project Semester at Instituto Superior de Engenharia decided to contribute with the design of an ethically and sustainability-oriented autonomous cleaning robot named MopBot. The project started with the research on similar solutions, ethics, marketing and sustainability to define a concept and create a functional, ethical and sustainability driven design, including the complete control system. Finally, given the undergoing pandemic, the operation of the MopBot was simulated using CoppeliaSim. MopBot is a medium-sized vacuum cleaner, with two vertical brushes, intended to clean autonomously large areas inside buildings such as shopping malls or corridors. It is shipped with a sustainable packaging solution which can be re-purposed as a disposal box for electrical components.

2021

Design, Modeling, and Simulation of a Wing Sail Land Yacht

Authors
Tinoco, V; Malheiro, B; Silva, MF;

Publication
APPLIED SCIENCES-BASEL

Abstract
Featured Application This work describes the design, modeling, and simulation of a free-rotating wing sail solution for an autonomous environmental land yacht probe. The adopted method involves the application of land sailing principles for the design, the usage of Fusion 360 tool for 3D modeling, and the integration of Gazebo with the Robotic Operating System (ROS) framework for the simulation of the land yacht. Autonomous land yachts can play a major role in the context of environmental monitoring, namely, in open, flat, windy regions, such as iced planes or sandy shorelines. This work addresses the design, modeling, and simulation of a land yacht probe equipped with a rigid free-rotating wing sail and tail flap. The wing was designed with a symmetrical airfoil and dimensions to provide the necessary thrust to displace the vehicle. Specifically, it proposes a novel design and simulation method for free rotating wing sail autonomous land yachts. The simulation relies on the Gazebo simulator together with the Robotic Operating System (ROS) middleware. It uses a modified Gazebo aerodynamics plugin to generate the lift and drag forces and the yawing moment, two newly created plugins, one to act as a wind sensor and the other to set the wing flap angular position, and the 3D model of the land yacht created with Fusion 360. The wing sail aligns automatically to the wind direction and can be set to any given angle of attack, stabilizing after a few seconds. Finally, the obtained polar diagram characterizes the expected sailing performance of the land yacht. The described method can be adopted to evaluate different wing sail configurations, as well as control techniques, for autonomous land yachts.

2021

Smart Bicycle Probe - An EPS@ISEP 2020 Project

Authors
Boularas, M; Szmytke, Z; Smith, L; Isik, K; Ruusunen, J; Malheiro, B; Justo, J; Ribeiro, C; Silva, MF; Ferreira, P; Guedes, P;

Publication
EDUCATING ENGINEERS FOR FUTURE INDUSTRIAL REVOLUTIONS, ICL2020, VOL 1

Abstract
Air pollution kills approximately 7 million people every year and nine out of ten people are exposed to high levels of airborne pollutants. This paper describes the design of a bicycle air probe by a team of multicultural and multidisciplinary students of the European Project Semester, during the spring of 2020. This learning experience started with the analysis of the state-of-the-art, ethics, marketing and sustainability dimensions, and was followed by the design, development and simulation of a proof-of-concept solution. The result is GOairLight - a bicycle probe paired with a mobile app. The probe collects air quality, humidity and temperature data as cyclists ride, while the mobile app shares the collected data with the community, by means of a cloud database, presents relevant air quality information and suggests less polluted routes. Furthermore, it relies on a sustainable energy source - a dynamo powered by the cyclist - and automatic lighting. The latter feature improves cyclist visibility and raises the awareness towards the cyclist, contributing to increased road safety.

2018

Preface

Authors
Silva, MF; Virk, GS; Tokhi, MO; Malheiro, B; Ferreira, P; Guedes, P;

Publication
Human-Centric Robotics- Proceedings of the 20th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2017

Abstract

2021

Crowdsourced Data Stream Mining for Tourism Recommendation

Authors
Leal, F; Veloso, B; Malheiro, B; Burguillo, JC;

Publication
Trends and Applications in Information Systems and Technologies - Volume 1, WorldCIST 2021, Terceira Island, Azores, Portugal, 30 March - 2 April, 2021.

Abstract
Crowdsourced data streams are continuous flows of data generated at high rate by users, also known as the crowd. These data streams are popular and extremely valuable in several domains. This is the case of tourism, where crowdsourcing platforms rely on tourist and business inputs to provide tailored recommendations to future tourists in real time. The continuous, open and non-curated nature of the crowd-originated data requires robust data stream mining techniques for on-line profiling, recommendation and evaluation. The sought techniques need, not only, to continuously improve profiles and learn models, but also be transparent, overcome biases, prioritise preferences, and master huge data volumes; all in real time. This article surveys the state-of-art in this field, and identifies future research opportunities. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2021

Elderly Monitoring - An EPS@ISEP 2020 Project

Authors
Priebe, J; Swiatek, K; Vidinha, M; Vaduva, MR; Tiits, M; Sorescu, TG; Malheiro, B; Ribeiro, C; Justo, J; Silva, MF; Ferreira, P; Guedes, P;

Publication
Trends and Applications in Information Systems and Technologies - Volume 1, WorldCIST 2021, Terceira Island, Azores, Portugal, 30 March - 2 April, 2021.

Abstract
In the spring of 2020, six undergraduate students from diverse countries and engineering fields decided to design together a solution to monitor the elderly. This project was performed as part of the European Project Semester (EPS) programme at Instituto Superior de Engenharia do Porto (ISEP). The EM-BRACE solution encompasses two interconnected devices (a home station and a bracelet) and mobile/Web twin applications. The bracelet measures and transmits vital user data (pulse, temperature and impacts) to the home station, whereas the latter measures home environment parameters (temperature, humidity and pressure) and sends local and bracelet data to an Internet of Things (IoT) platform. This way, these data become accessible via the mobile/Web application. Thereby, EM-BRACE monitors the health and environment of the elderly and timely notifies caregivers about problems, contributing to the well-being of the elderly and their families. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • 14
  • 25