Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Pedro Jorge

2024

LIBS imaging as a process control tool in the cork industry

Authors
Ferreira, MFS; Oliveira, R; Capela, D; Lopes, T; Marrafa, J; Meneses, P; Oliveira, A; Baptista, C; Gomes, T; Moutinho, S; Coelho, J; da Silva, RN; Guimaraes, D; Silva, NA; Jorge, PAD;

Publication
OPTICAL SENSING AND DETECTION VIII

Abstract
The application of surface treatments to cork stoppers is presently a common practice in the wine industry, designed to achieve maximum performance and optimal costumer experience of premium products. Unfortunately, current coating techniques lack efficient process control tools, often resulting in faulty products being detected too late, already in use, compromising performance, product quality and mining consumer confidence. In this work a fully automated system equipped with machine vision and automatic feeding of corks, was coupled with an imaging LIBS setup and used to perform a benchmarking against conventional quality control methods. Results clearly demonstrate the capability of the new LIBS system to effectively evaluate in real time the quality of silicone-based surface coatings in cork stoppers, effectively working as a tool for process control providing a route for effective optimization.

2024

Screening Chromium Contamination in Wood Samples using Laser-Induced Breakdown Spectroscopy Imaging

Authors
Guimaraes, D; Capela, D; Lones, T; Magalhaes, P; Pessanha, S; Jorge, PAS; Silva, NA;

Publication
2024 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS 2024

Abstract
Recycling of post-consumer wood waste into wood-based panels may be hindered by the presence of physical and chemical impurities in the waste stream. Therefore greater attention should be given to assessing the quality of wood waste and in particular to heavy metals contamination. One of the elements that poses concern is Chromium (Cr). Cr compounds can be toxic, particularly hexavalent chromium (Cr(VI)), which is a known human carcinogen. Hence, screening for Cr in wood waste plays a pivotal role in enhancing recycling facility operations and mitigating contamination before final product incorporation. In this study, a Laser-Induced Breakdown Spectroscopy (LIBS) methodology was optimized for screening wood waste for Cr and validated by X-ray Fluorescence (XRF) measurements. LIBS spectral complexity and sample matrix effects challenges were addressed through careful selection of Cr lines and tailored data analysis algorithms. The results showed that LIBS imaging successfully provided a straightforward timely output revealing the contaminated wood samples, crucial for quick decision-making in production lines.

2024

Multimodal Knowledge Distillation in Spectral Imaging

Authors
Lopes, T; Capela, D; Ferreira, MFS; Teixeira, J; Silva, C; Guimaraes, DF; Jorge, PAS; Silva, NA;

Publication
OPTICAL SENSING AND DETECTION VIII

Abstract
Spectral imaging is a powerful technology that uses spatially referenced spectral signatures to create informative visual maps of sample surfaces that can reveal more than what conventional RGB-visual images can show. Indeed, different spectroscopy modalities can provide different information about the same sample: for instance, Laser-Induced Breakdown Spectroscopy (LIBS) imaging can detect the presence of specific elements on the surface, while Raman imaging can identify the molecular structures and compositions of the sample, both of which have potential applications in various industrial processes, from quality control to material sorting. In the path from science to technology, the increasing accessibility to such solutions and the strong market pull have opened a window of opportunity for innovative multimodal imaging solutions, where information from distinct sources is set to be combined in order to enhance the capabilities of the single modality system. However, the practical implementation of multimodal spectral imaging is still a challenge, despite its theoretical potential, and as such, it is yet to be achieved. In this work, we will go over multimodal spectral knowledge distillation, a disruptive approach to multimodal spectral imaging techniques that tries to explore the combination of two techniques to capitalize on their individual strengths. In specific, this approach allows us to utilize one technique as an autonomous supervisor for the other, leveraging the higher degree of knowledge and interpretability of one of the techniques to increase the performance and transparency of the other. We present some example scenarios with LIBS and HSI and Raman spectroscopy and LIBS, discussing the impact of this new approach for scientific and technological applications.

2024

Unsupervised and interpretable discrimination of lithium-bearing minerals with Raman spectroscopy imaging

Authors
Guimaraes, D; Monteiro, C; Teixeira, J; Lopes, T; Capela, D; Dias, F; Lima, A; Jorge, PAS; Silva, NA;

Publication
HELIYON

Abstract
As lithium-bearing minerals become critical raw materials for the field of energy storage and advanced technologies, the development of tools to accurately identify and differentiate these minerals is becoming essential for efficient resource exploration, mining, and processing. Conventional methods for identifying ore minerals often depend on the subjective observation skills of experts, which can lead to errors, or on expensive and time-consuming techniques such as Inductively Coupled Plasma Mass Spectrometry (ICP-MS) or Optical Emission Spectroscopy (ICPOES). More recently, Raman Spectroscopy (RS) has emerged as a powerful tool for characterizing and identifying minerals due to its ability to provide detailed molecular information. This technique excels in scenarios where minerals have similar elemental content, such as petalite and spodumene, by offering distinct vibrational information that allows for clear differentiation between such minerals. Considering this case study and its particular relevance to the lithium- mining industry, this manuscript reports the development of an unsupervised methodology for lithium-mineral identification based on Raman Imaging. The deployed machine-learning solution provides accurate and interpretable results using the specific bands expected for each mineral. Furthermore, its robustness is tested with additional blind samples, providing insights into the unique spectral signatures and analytical features that enable reliable mineral identification.

2024

Automation of optical tweezers: an enabler for single cell analysis and diagnostic

Authors
Jorge, P; Teixeira, J; Rocha, V; Ribeiro, J; Silva, N;

Publication
BIOPHOTONICS IN POINT-OF-CARE III

Abstract
Sensing at the single cell level can provide insights into its dynamics and heterogeneity, yielding information otherwise unattainable with traditional biological methods where average population behavior is observed. In this context, optical tweezers provide the ability to select, separate, manipulate and identify single cells or other types of microparticles, potentially enabling single cell diagnostics. Forward or backscatter analysis of the light interacting with the trapped cells can provide valuable insights on the cell optical, geometrical and mechanical properties. In particular, the combination of tweezers systems with advanced machine learning algorithms can enable single cell identification capabilities. However, typical processing pipelines require a training stage which often struggles when trying to generalize to new sets of data. In this context, fully automated tweezers system can provide mechanisms to obtain much larger datasets with minimum effort form the users, while eliminating procedural variability. In this work, a pipeline for full automation of optical tweezers systems is discussed. A performance comparison between manually operated and fully automated tweezers systems is presented, clearly showing advantages of the latter. A case study demonstrating the ability of the system to discriminate molecular binding events on microparticles is presented.

2024

Ratiometric System based on an Ionic Liquid-modified Colorimetric Dye for Enhanced Carbon Dioxide Sensing

Authors
Lopes, X; Coelho, LCC; Jorge, PAS; Mendes, JP;

Publication
2024 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS 2024

Abstract
Carbon dioxide (CO2) holds paramount significance in nature, serving as a vital component in Earth's ecosystems. Its evaluation has become increasingly important across various sectors, spanning from environmental conservation to industrial operations. Therefore, this study investigates the viability of utilizing a pH colorimetric dye as a CO2-sensitive material. The material's effectiveness relies on chemical modifications induced in the dye structure through the action of a phase transfer agent, which establishes a stable equilibrium with the dye, thereby promoting its receptivity to CO2 molecules. As the resulting physicochemical changes primarily exhibit colorimetric alterations, an optical system was developed to assess the performance of this material upon exposure to CO2. Employing a dual-wavelength method, the system also incorporates a ratiometric relationship between the two signals to provide the most precise information. The conducted experiments generated promising results when the dye was subjected to varying concentrations of CO2, ranging from 0% to 4%, in comparison to nitrogen (N-2). The application of the ratiometric method emerged as a crucial factor in this system, enabling its potential use in environments characterized by instability. Finally, the dye-sensitive characteristics experienced enhancement through the integration of an ionic liquid within the membrane matrix.

  • 43
  • 44