2022
Authors
Ferreira, A; Pereira, T; Silva, F; Vilares, AT; Silva, MC; Cunha, A; Oliveira, HP;
Publication
2022 44TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC
Abstract
In the healthcare domain, datasets are often private and lack large amounts of samples, making it difficult to cope with the inherent patient data heterogeneity. As an attempt to mitigate data scarcity, generative models are being used due to their ability to produce new data, using a dataset as a reference. However, synthesis studies often rely on a 2D representation of data, a seriously limited form of information when it comes to lung computed tomography scans where, for example, pathologies like nodules can manifest anywhere in the organ. Here, we develop a 3D Progressive Growing Generative Adversarial Network capable of generating thoracic CT volumes at a resolution of 1283, and analyze the model outputs through a quantitative metric (3D Muli-Scale Structural Similarity) and a Visual Turing Test. Clinical relevance - This paper is a novel application of the 3D PGGAN model to synthesize CT lung scans. This preliminary study focuses on synthesizing the entire volume of the lung rather than just the lung nodules. The synthesized data represent an attempt to mitigate data scarcity which is one of the major limitations to create learning models with good generalization in healthcare.
2022
Authors
Teixeira, M; Pereira, T; Silva, F; Cunha, A; Oliveira, HP;
Publication
2022 44TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC
Abstract
Lung cancer is the leading cause of cancer death worldwide. Early low-dose computed tomography (CT) screening can decrease its mortality rate and computer-aided diagnoses systems may make these screenings more accessible. Radiomic features and supervised machine learning have traditionally been employed in these systems. Contrary to supervised methods, unsupervised learning techniques do not require large amounts of annotated data which are labor-intensive to gather and long training times. Therefore, recent approaches have used unsupervised methods, such as clustering, to improve the performance of supervised models. However, an analysis of purely unsupervised methods for malignancy prediction of lung nodules from CT images has not been performed. This work studies nodule malignancy in the LIDC-IDRI image collection of chest CT scans using established radiomic features and unsupervised learning methods based on k-Means, Spectral Clustering, and Gaussian Mixture clustering. All tested methods resulted in clusters of high homogeneity malignancy. Results suggest convex feature distributions and well-separated feature subspaces associated with different diagnoses. Furthermore, diagnosis uncertainty may be explained by common characteristics captured by radiomic features. The k-Means and Gaussian Mixture models are able to generalize to unseen data, achieving a balanced accuracy of 87.23% and 86.96% when inference was tested. These results motivate the usage of unsupervised approaches for malignancy prediction of lung nodules, such as cluster-then-label models. Clinical Relevance - Unsupervised clustering of radiomic features of lung nodules in chest CT scans can differentiate between malignant and benign cases and reflects experts' diagnosis uncertainty
2022
Authors
Frade, J; Pereira, T; Morgado, J; Silva, F; Freitas, C; Mendes, J; Negrao, E; de Lima, BF; da Silva, MC; Madureira, AJ; Ramos, I; Costa, JL; Hespanhol, V; Cunha, A; Oliveira, HP;
Publication
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
Abstract
Lung diseases affect the lives of billions of people worldwide, and 4 million people, each year, die prematurely due to this condition. These pathologies are characterized by specific imagiological findings in CT scans. The traditional Computer-Aided Diagnosis (CAD) approaches have been showing promising results to help clinicians; however, CADs normally consider a small part of the medical image for analysis, excluding possible relevant information for clinical evaluation. Multiple Instance Learning (MIL) approach takes into consideration different small pieces that are relevant for the final classification and creates a comprehensive analysis of pathophysiological changes. This study uses MIL-based approaches to identify the presence of lung pathophysiological findings in CT scans for the characterization of lung disease development. This work was focus on the detection of the following: Fibrosis, Emphysema, Satellite Nodules in Primary Lesion Lobe, Nodules in Contralateral Lung and Ground Glass, being Fibrosis and Emphysema the ones with more outstanding results, reaching an Area Under the Curve (AUC) of 0.89 and 0.72, respectively. Additionally, the MIL-based approach was used for EGFR mutation status prediction - the most relevant oncogene on lung cancer, with an AUC of 0.69. The results showed that this comprehensive approach can be a useful tool for lung pathophysiological characterization.
2023
Authors
Pereira, T; Cunha, A; Oliveira, HP;
Publication
APPLIED SCIENCES-BASEL
Abstract
2023
Authors
Machado, C; Cunha, A; Gouveia, AJ;
Publication
Procedia Computer Science
Abstract
2023
Authors
Mendes, J; Pereira, T; Silva, F; Frade, J; Morgado, J; Freitas, C; Negrao, E; de Lima, BF; da Silva, MC; Madureira, AJ; Ramos, I; Costa, JL; Hespanhol, V; Cunha, A; Oliveira, HP;
Publication
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
Biomedical engineering has been targeted as a potential research candidate for machine learning applications, with the purpose of detecting or diagnosing pathologies. However, acquiring relevant, high-quality, and heterogeneous medical datasets is challenging due to privacy and security issues and the effort required to annotate the data. Generative models have recently gained a growing interest in the computer vision field due to their ability to increase dataset size by generating new high-quality samples from the initial set, which can be used as data augmentation of a training dataset. This study aimed to synthesize artificial lung images from corresponding positional and semantic annotations using two generative adversarial networks and databases of real computed tomography scans: the Pix2Pix approach that generates lung images from the lung segmentation maps; and the conditional generative adversarial network (cCGAN) approach that was implemented with additional semantic labels in the generation process. To evaluate the quality of the generated images, two quantitative measures were used: the domain-specific Frechet Inception Distance and Structural Similarity Index. Additionally, an expert assessment was performed to measure the capability to distinguish between real and generated images. The assessment performed shows the high quality of synthesized images, which was confirmed by the expert evaluation. This work represents an innovative application of GAN approaches for medical application taking into consideration the pathological findings in the CT images and the clinical evaluation to assess the realism of these features in the generated images.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.