Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by António Cunha

2022

Classification of Video Capsule Endoscopy Images Using Visual Transformers

Authors
Lima, DLS; Pessoa, ACP; de Paiva, AC; Cunha, AMTD; Braz, G; de Almeida, JDS;

Publication
2022 IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI) JOINTLY ORGANISED WITH THE IEEE-EMBS INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN'22)

Abstract
Cancers related to the gastrointestinal tract have a high incidence rate in the population, with a high mortality rate. Videos obtained through endoscopic capsules are essential for evaluating anomalies that can progress to cancer. However, due to their duration, which can reach 10 hours, they demand great attention from the medical specialist in their analysis. Machine learning techniques have been successfully applied in developing computer-aided diagnostic systems since the 1990s, where Convolutional Neural Networks (CNNs) have become very successful for pattern recognition in images. CNNs use convolutions to extract features from the analyzed data, operating in a fixed-size window and thus having problems capturing pixel-level relationships considering the spatial and temporal domains. Otherwise, transformers use attention mechanisms, where data is structured in a vector space that can aggregate information from adjacent data to determine meaning in a given context. This work proposes a computational method for analyzing images extracted from videos obtained by endoscopic capsules, using a transformer-based model that helps diagnose of gastrointestinal tract abnormalities. Preliminary results are promising. The classification task of 11 classes evaluated on the publicly available Kvasir-Capsule dataset yielded an average value of 99.70% of accuracy, 99.64% of precision, 99.86% of sensitivity, and 99.54% of f1-score.

2022

Synthesizing 3D Lung CT scans with Generative Adversarial Networks

Authors
Ferreira, A; Pereira, T; Silva, F; Vilares, AT; Da Silva, MC; Cunha, A; Oliveira, HP;

Publication
44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society, EMBC 2022, Glasgow, Scotland, United Kingdom, July 11-15, 2022

Abstract
In the healthcare domain, datasets are often private and lack large amounts of samples, making it difficult to cope with the inherent patient data heterogeneity. As an attempt to mitigate data scarcity, generative models are being used due to their ability to produce new data, using a dataset as a reference. However, synthesis studies often rely on a 2D representation of data, a seriously limited form of information when it comes to lung computed tomography scans where, for example, pathologies like nodules can manifest anywhere in the organ. Here, we develop a 3D Progressive Growing Generative Adversarial Network capable of generating thoracic CT volumes at a resolution of 1283, and analyze the model outputs through a quantitative metric (3D Muli-Scale Structural Similarity) and a Visual Turing Test. Clinical relevance - This paper is a novel application of the 3D PGGAN model to synthesize CT lung scans. This preliminary study focuses on synthesizing the entire volume of the lung rather than just the lung nodules. The synthesized data represent an attempt to mitigate data scarcity which is one of the major limitations to create learning models with good generalization in healthcare.

2022

Unsupervised Approach for Malignancy Assessment of Lung Nodules in Computed Tomography Scans Using Radiomic Features

Authors
Teixeira, M; Pereira, T; Silva, F; Cunha, A; Oliveira, HP;

Publication
44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society, EMBC 2022, Glasgow, Scotland, United Kingdom, July 11-15, 2022

Abstract
Lung cancer is the leading cause of cancer death worldwide. Early low-dose computed tomography (CT) screening can decrease its mortality rate and computer-aided diagnoses systems may make these screenings more accessible. Radiomic features and supervised machine learning have traditionally been employed in these systems. Contrary to supervised methods, unsupervised learning techniques do not require large amounts of annotated data which are labor-intensive to gather and long training times. Therefore, recent approaches have used unsupervised methods, such as clustering, to improve the performance of supervised models. However, an analysis of purely unsupervised methods for malignancy prediction of lung nodules from CT images has not been performed. This work studies nodule malignancy in the LIDC-IDRI image collection of chest CT scans using established radiomic features and unsupervised learning methods based on k-Means, Spectral Clustering, and Gaussian Mixture clustering. All tested methods resulted in clusters of high homogeneity malignancy. Results suggest convex feature distributions and well-separated feature subspaces associated with different diagnoses. Furthermore, diagnosis uncertainty may be explained by common characteristics captured by radiomic features. The k-Means and Gaussian Mixture models are able to generalize to unseen data, achieving a balanced accuracy of 87.23% and 86.96% when inference was tested. These results motivate the usage of unsupervised approaches for malignancy prediction of lung nodules, such as cluster-then-label models. Clinical Relevance - Unsupervised clustering of radiomic features of lung nodules in chest CT scans can differentiate between malignant and benign cases and reflects experts' diagnosis uncertainty

2022

Multiple instance learning for lung pathophysiological findings detection using CT scans

Authors
Frade, J; Pereira, T; Morgado, J; Silva, F; Freitas, C; Mendes, J; Negrao, E; de Lima, BF; da Silva, MC; Madureira, AJ; Ramos, I; Costa, JL; Hespanhol, V; Cunha, A; Oliveira, HP;

Publication
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING

Abstract
Lung diseases affect the lives of billions of people worldwide, and 4 million people, each year, die prematurely due to this condition. These pathologies are characterized by specific imagiological findings in CT scans. The traditional Computer-Aided Diagnosis (CAD) approaches have been showing promising results to help clinicians; however, CADs normally consider a small part of the medical image for analysis, excluding possible relevant information for clinical evaluation. Multiple Instance Learning (MIL) approach takes into consideration different small pieces that are relevant for the final classification and creates a comprehensive analysis of pathophysiological changes. This study uses MIL-based approaches to identify the presence of lung pathophysiological findings in CT scans for the characterization of lung disease development. This work was focus on the detection of the following: Fibrosis, Emphysema, Satellite Nodules in Primary Lesion Lobe, Nodules in Contralateral Lung and Ground Glass, being Fibrosis and Emphysema the ones with more outstanding results, reaching an Area Under the Curve (AUC) of 0.89 and 0.72, respectively. Additionally, the MIL-based approach was used for EGFR mutation status prediction - the most relevant oncogene on lung cancer, with an AUC of 0.69. The results showed that this comprehensive approach can be a useful tool for lung pathophysiological characterization.

2023

Special Issue on Novel Applications of Artificial Intelligence in Medicine and Health

Authors
Pereira, T; Cunha, A; Oliveira, HP;

Publication
APPLIED SCIENCES-BASEL

Abstract
Artificial Intelligence (AI) is one of the big hopes for the future of a positive revolution in the use of medical data to improve clinical routine and personalized medicine [...]

2023

Migration of a stock management application in the healthcare industry to a Web/Mobile environment: A project report

Authors
Machado, C; Cunha, A; Gouveia, AJ;

Publication
Procedia Computer Science

Abstract

  • 14
  • 26