2024
Authors
Silva, T; Correia, P; Sousa, L; Bispo, J; Carvalho, T;
Publication
ACM Transactions on Embedded Computing Systems
Abstract
2025
Authors
Andrade, H; Bispo, J; Correia, FF;
Publication
JOURNAL OF SOFTWARE-EVOLUTION AND PROCESS
Abstract
Code comprehension is often supported by source code analysis tools that provide more abstract views over software systems, such as those detecting design patterns. These tools encompass analysis of source code and ensuing extraction of relevant information. However, the analysis of the source code is often specific to the target programming language. We propose DP-LARA, a multilanguage pattern detection tool that uses the multilanguage capability of the LARA framework to support finding pattern instances in a code base. LARA provides a virtual AST, which is common to multiple OOP programming languages, and DP-LARA then performs code analysis of detecting pattern instances on this abstract representation. We evaluate the detection performance and consistency of DP-LARA with a few software projects. Results show that a multilanguage approach does not compromise detection performance, and DP-LARA is consistent across the languages we tested it for (i.e., Java and C/C++). Moreover, by providing a virtual AST as the abstract representation, we believe to have decreased the effort of extending the tool to new programming languages and maintaining existing ones.
2025
Authors
Vincenzi, AMR; Kuroishi, PH; Bispo, J; da Veiga, ARC; da Mata, DRC; Azevedo, FB; Paiva, ACR;
Publication
JOURNAL OF SYSTEMS AND SOFTWARE
Abstract
Mutation testing maybe used to guide test case generation and as a technique to assess the quality of test suites. Despite being used frequently, mutation testing is not so commonly applied in the mobile world. One critical challenge in mutation testing is dealing with its computational cost. Generating mutants, running test cases over each mutant, and analyzing the results may require significant time and resources. This research aims to contribute to reducing Android mutation testing costs. It implements mutation testing operators (traditional and Android-specific) according to mutant schemata (implementing multiple mutants into a single code file). It also describes an Android mutation testing framework developed to execute test cases and determine mutation scores. Additional mutation operators can be implemented in JavaScript and easily integrated into the framework. The overall approach is validated through case studies showing that mutant schemata have advantages over the traditional mutation strategy (one file per mutant). The results show mutant schemata overcome traditional mutation in all evaluated aspects with no additional cost: it takes 8.50% less time for mutant generation, requires 99.78% less disk space, and runs, on average, 6.45% faster than traditional mutation. Moreover, considering sustainability metrics, mutant schemata have 8,18% less carbon footprint than traditional strategy.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.