Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Orlando Frazão

2024

Enhanced Sensitivity in Optical Sensors through Self-Image Theory and Graphene Oxide Coating

Authors
Cunha, C; Monteiro, C; Vaz, A; Silva, S; Frazao, O; Novais, S;

Publication
SENSORS

Abstract
This paper presents an approach to enhancing sensitivity in optical sensors by integrating self-image theory and graphene oxide coating. The sensor is specifically engineered to quantitatively assess glucose concentrations in aqueous solutions that simulate the spectrum of glucose levels typically encountered in human saliva. Prior to sensor fabrication, the theoretical self-image points were rigorously validated using Multiphysics COMSOL 6.0 software. Subsequently, the sensor was fabricated to a length corresponding to the second self-image point (29.12 mm) and coated with an 80 mu m/mL graphene oxide film using the Layer-by-Layer technique. The sensor characterization in refractive index demonstrated a wavelength sensitivity of 200 +/- 6 nm/RIU. Comparative evaluations of uncoated and graphene oxide-coated sensors applied to measure glucose in solutions ranging from 25 to 200 mg/dL showed an eightfold sensitivity improvement with one bilayer of Polyethyleneimine/graphene. The final graphene oxide-based sensor exhibited a sensitivity of 10.403 +/- 0.004 pm/(mg/dL) and demonstrated stability with a low standard deviation of 0.46 pm/min and a maximum theoretical resolution of 1.90 mg/dL.

2024

A century on diameter measurement techniques in cylindrical structures

Authors
Cardoso, VHR; Caldas, P; Giraldi, MTR; Cernadas, ML; Fernandes, CS; Frazao, O; Costa, JCWA; Santos, JL;

Publication
MEASUREMENT SCIENCE AND TECHNOLOGY

Abstract
This work addresses the historical development of techniques and methodologies oriented to the measurement of the internal diameter of transparent tubes since the original contributions of Anderson and Barr published in 1923 in the first issue of Measurement Science and Technology. The progresses on this field are summarized and highlighted the emergence and significance of the measurement approaches supported by the optical fiber.

2024

Optimizing Graphene Oxide Saturable Absorbers for Short Pulse Generation in Fiber Lasers: Characterization and Aging Assessment

Authors
Monteiro, CS; Perez-Herrera, RA; Silva, NA; Silva, SO; Frazao, O;

Publication
FIBER LASERS AND GLASS PHOTONICS: MATERIALS THROUGH APPLICATIONS IV

Abstract
The generation of short pulses in fiber lasers using saturable absorbers made of graphene oxide (GO), focusing on film thickness, was studied and optimized. The saturable absorber comprised a GO thin film deposited onto a single-mode fiber using the spray coating technique. Water-dispersed GO with a concentration of 4 mg/mL, characterized by a high proportion of monolayer flakes, was employed. This thin film was integrated into a cavity ring laser featuring an erbium-doped fiber amplifier (EDFA), resulting in a fiber laser emitting at a central emission wavelength of approximately 1564 nm and having a total cavity length of approximately 120 m. By controlling intracavity polarization, short-pulsed light was generated through mode-locking, Q switching, or a combination of both regimes. This work presents a comprehensive characterization of the cavity ring laser operating under the mode-locking regime. It encompasses an analysis of the spectral behavior, focusing on the evolution of the Kelly's sidebands with increasing pump power, as well as an assessment of its temporal stability. Moreover, the effects of the aging of the saturable absorber material were studied after a time period of 6 months after the fabrication. It was observed that the general characteristics of spectral signal of the laser were maintained, with long-term stability .

2024

Coreless Silica Fiber Sensor based on Self-Image Theory and coated with Graphene Oxide

Authors
Cunha, C; Monteiro, C; Vaz, A; Silva, S; Frazao, O; Novais, S;

Publication
OPTICAL SENSING AND DETECTION VIII

Abstract
This work provides a method that combines graphene oxide coating and self-image theory to improve the sensitivity of optical sensors. The sensor is designed specifically to measure the amount of glucose present quantitatively in aqueous solutions that replicate the range of glucose concentrations found in human saliva. COMSOL Multiphysics 6.0 was used to simulate the self-imaging phenomenon using a coreless silica fiber (CSF). For high-quality self-imaging, the second and fourth self-imaging points are usually preferred because of their higher coupling efficiency, which increases the sensor sensitivity. However, managing the fourth self-image is more difficult because it calls for a longer CSF length. As a result, the first and second self-image points were the focus of the simulation in this work. After the simulation, using the Layerby-Layer method, the sensor was constructed to a length that matched the second self-image point (29.12 mm) and coated with an 80 mu m/mL graphene oxide layer. When comparing uncoated and graphene oxide-covered sensors to measure glucose in liquids ranging from 25 to 200 mg/dL, one bilayer of polyethyleneimine/graphene demonstrated an eight-fold improvement in sensitivity. The final sensor, built on graphene oxide, showed stability with a low standard deviation of 0.6 pm/min. It also showed sensitivity at 10.403 +/- 0.004 pm/(mg/dL) with a limit of detection of 9.15 mg/dL.

2024

In-situ temperature monitorization in oscillatory flow crystallizer using optical fiber sensors with a Bragg grating inscribed at the fiber tips ends

Authors
Soares, L; Novais, S; Ferreira, A; Frazão, O; Silva, S;

Publication
EPJ Web of Conferences

Abstract
Optical fiber sensors were implemented to measure in-situ temperature variations in an oscillatory flow crystallizer operating in continuous. The sensors were fabricated by cleaved in the middle 8 mm-length fiber Bragg gratings, forming tips with a Bragg grating of 4 mm inscribed at the fiber ends. The geometry of the sensors fabricated, with a diameter of 125 µm, allowed the temperature monitorization of the process flow, inside the crystallizer, at four different points: input, two intermediate points, and output. The results revealed that the proposed technology allows to perform an in-situ and in line temperature monitorization, during all the crystallization process, as an alternative to more expensive and complex technology. © The Authors, published by EDP Sciences.

2024

Novel Digital Signal Processing Method for Data Acquired From Low Coherence Interferometry

Authors
Robalinho, P; Rodrigues, AV; Novais, S; Ribeiro, AL; Silva, S; Frazao, O;

Publication
IEEE SENSORS JOURNAL

Abstract
The aim of this work is to introduce a novel digital signal processing method for data acquired using low coherence interferometry (LCI) with a 1-kHz actuator oscillation frequency. Convolution and correlation operations are employed as efficient filters, reducing computational complexity for multilayer filtering. An envelope filtering technique is developed to address discrepancies in peak signal determination caused by nonlinear actuator motion. Additionally, a phase linearization method is presented to normalize the peak position relative to the actuator signal. Experimental results demonstrate a significant signal-to-noise ratio (SNR) improvement of 50 dB. Long-term measurements reveal an 11-dB noise reduction for frequencies below 1 mHz. This research enables LCI implementation at sampling rates of at least 1 kHz and expands its applicability to extreme measurement conditions.

  • 89
  • 89