Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CEGI

2024

Understanding service ecosystem dynamics: a typology

Authors
As'ad, N; Patrício, L; Koskela-Huotari, K; Edvardsson, B;

Publication
JOURNAL OF SERVICE MANAGEMENT

Abstract
PurposeThe service environment is becoming increasingly turbulent, leading to calls for a systemic understanding of it as a set of dynamic service ecosystems. This paper advances this understanding by developing a typology of service ecosystem dynamics that explains the varying interplay between change and stability within the service environment through distinct behavioral patterns exhibited by service ecosystems over time. Design/methodology/approachThis study builds upon a systematic literature review of service ecosystems literature and uses system dynamics as a method theory to abductively analyze extant literature and develop a typology of service ecosystem dynamics. FindingsThe paper identifies three types of service ecosystem dynamics-behavioral patterns of service ecosystems-and explains how they unfold through self-adjustment processes and changes within different systemic leverage points. The typology of service ecosystem dynamics consists of (1) reproduction (i.e. stable behavioral pattern), (2) reconfiguration (i.e. unstable behavioral pattern) and (3) transition (i.e. disrupting, shifting behavioral pattern). Practical implicationsThe typology enables practitioners to gain a deeper understanding of their service environment by discerning the behavioral patterns exhibited by the constituent service ecosystems. This, in turn, supports them in devising more effective strategies for navigating through it. Originality/valueThe paper provides a precise definition of service ecosystem dynamics and shows how the identified three types of dynamics can be used as a lens to empirically examine change and stability in the service environment. It also offers a set of research directions for tackling service research challenges.

2024

It's the moment of truth: a longitudinal study of touchpoint influence on business-to-business relationships

Authors
Cambra-Fierro, J; Patrício, L; Polo-Redondo, Y; Trifu, A;

Publication
JOURNAL OF RESEARCH IN INTERACTIVE MARKETING

Abstract
Purpose - Customer-provider relationships unfold through multiple touchpoints across different channels. However, some touchpoints are more important than others. Such important touchpoints are viewed as moments of truth (MOTs). This study examines the impact of a series of touchpoints on an MOT, and the role MOTs play in determining future profitability and other behavioral outcomes (e.g. customer retention and customer cross-buy) in a business-to-business (B2B) context. Design/methodology/approach - Building upon social exchange theory, a conceptual model is proposed and tested that examines the impact of human, digital, and physical touchpoints and past MOTs on customer evaluation of a current MOT and on future customer outcomes. This research employs a longitudinal methodology based on a unique panel dataset of 2,970 B2B customers. Findings - Study results show that all touchpoints significantly contribute to MOTs, while human and physical touchpoints maintain their primacy during MOTs. The impact of MOTs on future customer outcomes is also demonstrated. Practical implications - This study highlights the need for prioritizing human and physical touchpoints in managing MOTs, and for carefully managing MOTs across time. Originality/value - Given its B2B outlook and longitudinal approach, this research contributes to the multichannel and interactive marketing literature by determining relevant touchpoints for B2B customers.

2024

Machine learning and cointegration for structural health monitoring of a model under environmental effects

Authors
Rodrigues, M; Miguéis, VL; Felix, C; Rodrigues, C;

Publication
EXPERT SYSTEMS WITH APPLICATIONS

Abstract
Data-driven models have been recognized as powerful tools to support Structural Health Monitoring (SHM). This paper contributes to the literature by exploring two data-driven approaches to detect damage through changes in a set of variables that assess the condition of the structure, and accommodates the challenge that may arise due to the influence of environmental and operational variabilities. This influence is reflected in the response of the structure and can reduce the probability of detecting damage in a structure or increase the probability of signaling false positives. This paper conducts a comparative study between a machine learning detection approach (supported by linear regression, random forest, support vector machine, and neural networks) and a cointegration approach, with the aim of detecting damage as early as possible. This study also contributes to the literature by evaluating the merits of the damage detection methods using real data collected from a small-scale structure. The structure is analyzed in a reference state and a perturbed state in which damage is emulated. The results show that both approaches are able to detect damage within the first 24 h, without ever signaling false positives. The cointegration based approach can notably detect damage after 10 h and 15 minutes, while the machine learning approach takes 20 h 30 m to detect damage.

2024

Machine learning models for short-term demand forecasting in food catering services: A solution to reduce food waste

Authors
Rodrigues, M; Miguéis, V; Freitas, S; Machado, T;

Publication
JOURNAL OF CLEANER PRODUCTION

Abstract
Food waste is responsible for severe environmental, social, and economic issues and therefore it is imperative to prevent or at least minimize its generation. The main cause of food waste is poor demand forecasting and so it is essential to improve the accuracy of the tools tasked with these forecasts. The present work proposes four models meant to help food catering services predict food demand accurately and thus avoid overproducing or underproducing. Each model is based on a different machine learning technique. Two baseline models are also proposed to mimic how food catering services estimate future demand and to infer the added value of employing machine learning in this context. To verify the impact of the proposed models, they were tested on data from the three different canteens chosen as case studies. The results show that the models based on the random forest algorithm and the long short-term memory neural network produced the best forecasts, which would lead to a 14% to 52% reduction in the number of wasted meals. Furthermore, by basing their decisions on these forecasts, the food catering services would be able to reduce unmet demand by 3% to 16% when compared with the forecasts of the baseline models. Thus, employing machine learning to forecast future demand can be very beneficial to food catering services. These forecasts can increase the service level of food services and reduce food waste, mitigating its environmental, social, and economic consequences.

2024

Students' complex trajectories: exploring degree change and time to degree

Authors
Pêgo, JP; Miguéis, VL; Soeiro, A;

Publication
INTERNATIONAL JOURNAL OF EDUCATIONAL TECHNOLOGY IN HIGHER EDUCATION

Abstract
The complex trajectories of higher education students are deviations from the regular path due to delays in completing a degree, dropping out, taking breaks, or changing programmes. In this study, we investigated degree changing as a cause of complex student trajectories. We characterised cohorts of students who graduated with a complex trajectory and identified the characteristics that influenced the time to graduation. To support this predictive task, we employed machine learning techniques such as neural networks, support vector machines, and random forests. In addition, we used interpretable techniques such as decision trees to derive managerial insights that could prove useful to decision-makers. We validated the proposed methodology taking the University of Porto (Portugal) as case study. The results show that the time to degree (TTD) of students with and without complex trajectories was different. Moreover, the proposed models effectively predicted TTD, outperforming two benchmark models. The random forest model proved to be the best predictor. Finally, this study shows that the factors that best predict TTD are the median TTD and the admission regime of the programme of destination of transfer students, followed by the admission average of the previous programme. By identifying students who take longer to complete their studies, targeted interventions such as counselling and tutoring can be promoted, potentially improving completion rates and educational outcomes without having to use as many resources.

2024

Development of the Dietary Pattern Sustainability Index (DIPASI): A novel multidimensional approach for assessing the sustainability of an individual's diet

Authors
Bôto, JM; Neto, B; Miguéis, V; Rocha, A;

Publication
SUSTAINABLE PRODUCTION AND CONSUMPTION

Abstract
The adoption of sustainable dietary patterns that consider simultaneously nutritional well-being and reduced environmental impact is of paramount importance. This paper introduces the Dietary Pattern Sustainability Index (DIPASI), as a method to assess the sustainability of dietary patterns by covering the environmental, nutritional, and economic dimensions in a single score. Environmental indicators include carbon footprint, water footprint, and land use, the nutritional quality is evaluated through the Nutritional Rich Diet 9.3 score, and the economic aspects are considered using diet cost. DIPASI measures the deviation (in %) of an individual's diet in relation to a reference diet. The case study utilized dietary data from the Portuguese National Food, Nutrition, and Physical Activity Survey (IAN-AF 2015-2016), which included 2999 adults aged 18 to 64. The Portuguese dietary patterns (covering 1492 food products consumed), were compared against the reference Mediterranean diet. Results indicated that the Portuguese dietary pattern had a higher environmental impact (CF: 4.32 kg CO2eq/day, WF: 3162.88 L/day, LU: 7.03 m(2)/day), a lower nutritional quality (NRD9.3: 334), and a higher cost (6.65 euros/day) when compared to the Mediterranean diet (CF: 3.30 kg CO2eq/day, WF: 2758.84 L/day, LU: 3.67 m(2)/day, NRD9.3: 668, cost: 5.71 euros/day). DIPASI reveals that only 4% of the sample's population does not deviate or presents a positive deviation (> - 0.5%) from the Mediterranean diet, indicating that the majority of Portuguese individuals have lower sustainability performance. For the environmental sub-score, this percentage was 21.3%, for the nutritional sub-score was 10.9%, and for the economic sub-score was 34.2%. This study provides a robust framework for assessing dietary sustainability on a global scale. The comprehensive methodology offers an essential foundation for understanding and addressing challenges in promoting sustainable and healthy dietary choices worldwide.

  • 10
  • 187