2024
Authors
Golalikhani, M; Oliveira, BB; Correia, GHD; Oliveira, JF; Carravilla, MA;
Publication
TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW
Abstract
One of the main challenges of one-way carsharing systems is to maximize profit by attracting potential customers and utilizing the fleet efficiently. Pricing plans are mid or long-term decisions that affect customers' decision to join a carsharing system and may also be used to influence their travel behavior to increase fleet utilization e.g., favoring rentals on off-peak hours. These plans contain different attributes, such as registration fee, travel distance fee, and rental time fee, to attract various customer segments, considering their travel habits. This paper aims to bridge a gap between business practice and state of the art, moving from unique single-tariff plan assumptions to a realistic market offer of multi-attribute plans. To fill this gap, we develop a mixed-integer linear programming model and a solving method to optimize the value of plans' attributes that maximize carsharing operators' profit. Customer preferences are incorporated into the model through a discrete choice model, and the Brooklyn taxi trip dataset is used to identify specific customer segments, validate the model's results, and deliver relevant managerial insights. The results show that developing customized plans with time- and location-dependent rates allows the operators to increase profit compared to fixed-rate plans. Sensitivity analysis reveals how key parameters impact customer choices, pricing plans, and overall profit.
2024
Authors
Biró, P; Klijn, F; Klimentova, X; Viana, A;
Publication
MATHEMATICS OF OPERATIONS RESEARCH
Abstract
In a housing market of Shapley and Scarf, each agent is endowed with one indivisible object and has preferences over all objects. An allocation of the objects is in the (strong) core if there exists no (weakly) blocking coalition. We show that, for strict preferences, the unique strong core allocation respects improvement-if an agent's object becomes more desirable for some other agents, then the agent's allotment in the unique strong core allocation weakly improves. We extend this result to weak preferences for both the strong core (conditional on nonemptiness) and the set of competitive allocations (using probabilistic allocations and stochastic dominance). There are no counterparts of the latter two results in the two-sided matching literature. We provide examples to show how our results break down when there is a bound on the length of exchange cycles. Respecting improvements is an important property for applications of the housing markets model, such as kidney exchange: it incentivizes each patient to bring the best possible set of donors to the market. We conduct computer simulations using markets that resemble the pools of kidney exchange programs. We compare the game-theoretical solutions with current techniques (maximum size and maximum weight allocations) in terms of violations of the respecting improvement property. We find that game-theoretical solutions fare much better at respecting improvements even when exchange cycles are bounded, and they do so at a low efficiency cost. As a stepping stone for our simulations, we provide novel integer programming formulations for computing core, competitive, and strong core allocations.
2024
Authors
Öztürk, EG; Rocha, P; Rodrigues, AM; Ferreira, JS; Lopes, C; Oliveira, C; Nunes, AC;
Publication
DECISION SUPPORT SYSTEMS
Abstract
Sectorization problems refer to dividing a large set, area or network into smaller parts concerning one or more objectives. A decision support system (DSS) is a relevant tool for solving these problems, improving optimisation procedures, and finding feasible solutions more efficiently. This paper presents a new web-based Decision Support System for Sectorization (D3S). D3S is designed to solve sectorization problems in various areas, such as school and health districting,planning sales territories and maintenance operations zones, or political districting. Due to its generic design, D3S bridges the gap between sectorization problems and a state-of-the-art decision support tool. The paper aims to present the generic and technical attributes of D3S by providing detailed information regarding the problem-solution approach (based on Evolutionary Algorithms), objectives (most common in sectorization), constraints, structure and performance.
2024
Authors
Torres, G; Fontes, T; Rodrigues, AM; Rocha, P; Ribeiro, J; Ferreira, JS;
Publication
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
The efficient last-mile delivery of goods involves complex challenges in optimizing driver sectors and routes. This problem tends to be large-scale and involves several criteria to meet simultaneously, such as creating compact sectors, balancing the workload among drivers, minimizing the number of undelivered packages and reducing the dissimilarity of sectors on different days. This work proposes a Decision Support System (DSS) that allows decision-makers to select improved allocation strategies to define sectors. The main contribution is an interactive DSS tool that addresses a many-objective (more than 3 objectives) sectorization problem with integrated routing. It establishes a global allocation strategy and uses it as a benchmark for the created daily allocations and routes. A Preference-Inspired Co-Evolutionary Algorithm with Goal vectors using Mating Restriction (PICEA-g-mr) is employed to solve the many-objective optimization problem. The DSS also includes a visualization tool to aid decision-makers in selecting the most suitable allocation strategy. The approach was tested in a medium-sized Metropolitan Area and evaluated using resource evaluation metrics and visualization methods. The proposed DSS deals effectively and efficiently with the sectorization problem in the context of last-mile delivery by producing a set of viable and good-quality allocations, empowering decision-makers in selecting better allocation strategies. Focused on enhancing service efficiency and driver satisfaction, the DSS serves as a valuable tool to improve overall service quality.
2024
Authors
Silva, JC; Rodrigues, JC; Miguéis, VL;
Publication
EDUCATION AND INFORMATION TECHNOLOGIES
Abstract
Implementation of information and communication technologies (ICTs) in education is defined as the incorporation of ICTs into teaching and learning activities, both inside and outside the classroom. Despite widely studied, there is still no consensus on how it affects student performance. However, before evaluating this, it is crucial to identify which factors impact students' use of ICT for educational purposes. This understanding can help educational institutions to effectively implement ICT, potentially improving student results. Thus, adapting the conceptual framework proposed by Biagi and Loi (2013) and using the 2018 database of the Program for International Student Assessment (PISA) and a decision tree classification model developed based on CRISP-DM framework, we aim to determine which socio-demographic factors influence students' use of ICT for educational purposes. First, we categorized students according to their use of ICT for educational purposes in two situations: during lessons and outside lessons. Then, we developed a decision tree model to distinguish these categories and find patterns in each group. The model was able to accurately distinguish different levels of ICT adoption and demonstrate that ICT use for entertainment and ICT access at school and at home are among the most influential variables to predict ICT use for educational purposes. Moreover, the model showed that variables related to teaching best practices of Internet utilization at school are not significant predictors of such use. Some results were found to be country-specific, leading to the recommendation that each country adapts the measures to improve ICT use according to its context.
2024
Authors
Rodrigues, JC; Barros, AC; Claro, J;
Publication
TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE
Abstract
This paper analyses the process of generalisation of an innovative government-led public practice in the healthcare sector. The scaling and embedding involved in this generalisation process are assumed to be dependent on the multiple implementation processes (consecutive or simultaneous) that lead to a routine use of the innovation in different adopters. This paper, therefore, proposes the use of a configurational theory approach to conceptualise each implementation of the innovation during the generalisation process and shed light on the generalisation's scaling and embedding efforts. It suggests a set of recommendations and practices for generalisation managers, most notably: i) they should regard generalisations as organic processes where their main role is to create space for experimentation, learning and negotiation, and ii) they should adopt different modes of governance to identify adequate mechanisms and strategies and guide their actions. This configurational perspective allows them to monitor and manage the evolution of implementations, informs the valuable learning processes that take place in a generalisation and has been found to be a useful tool to support the crucial collaboration among the actors involved in a generalisation.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.