2024
Authors
Vanhoucke, M; Coelho, J;
Publication
COMPUTERS & OPERATIONS RESEARCH
Abstract
This paper present an instance transformation procedure to modify known instances of the resource -constrained project scheduling problem to make them easier to solve by heuristic and/or exact solution algorithms. The procedure makes use of a set of transformation rules that aim at reducing the feasible search space without excluding at least one possible optimal solution. The procedure will be applied to a set of 11,183 instances and it will be shown by a set of experiments that these transformations lead to 110 improved lower bounds, 16 new and better schedules (found by three meta -heuristic procedures and a set of branch -and -bound procedures) and even 64 new optimal solutions which were never not found before.
2024
Authors
Furlan, M; Almada Lobo, B; Santos, M; Morabito, R;
Publication
COMPUTERS & INDUSTRIAL ENGINEERING
Abstract
Vertical pulp and paper production is challenging from a process point of view. Managers must deal with floating bottlenecks, intermediate storage levels, and by-product production to control the whole process while reducing unexpected downtimes. Thus, this paper aims to address the integrated lot sizing and scheduling problem considering continuous digester production, multiple paper machines, and a chemical recovery line to treat by-products. The aim is to minimize the total production cost to meet customer demands, considering all productive resources and encouraging steam production (which can be used in power generation). Production planning should define the sizes of production lots, the sequence of paper types produced in each machine, and the digester working speed throughout the planning horizon. Furthermore, it should indicate the rate of byproduct treatment at each stage of the recovery line and ensure the minimum and maximum storage limits. Due to the difficulty of exactly solving the mixed integer programming model representing this problem for realworld instances, mainly with planning horizons of over two weeks, constructive and improvement heuristics are proposed in this work. Different heuristic combinations are tested on hundreds of instances generated from data collected from the industry. Comparisons are made with a commercial Mixed-Integer and Linear Programming solver and a hybrid metaheuristic. The results show that combining the greedy constructive heuristic with the new variation of a fix-and-optimize improvement method delivers the best performance in both solution quality and computational time and effectively solves realistic size problems in practice. The proposed method achieved 69.41% of the best solutions for the generated set and 55.40% and 64.00% for the literature set for 1 and 2 machines, respectively, compared with the best solution method from the literature and a commercial solver.
2024
Authors
Gonçalves, T; Almada Lobo, B;
Publication
Journal of Revenue and Pricing Management
Abstract
In the original version of this article, "Data availability" statement was mistakenly inserted. The following data availability statement should be removed. As a final point, while the traditional independent demand model involves comparing unconstrained bookings with unconstrained demand forecasts to assess prediction accuracy, handling dependent demand is more complex, since the availability of a class affects the demand for other classes. Therefore, it is essential to have forecast data for all control policies, as advocated by Fiig et al. (2014), to establish a standardized method for computing forecast errors. This ensures the accurate functionality of the predictive model for optimal margin correction. The original article has been corrected. © The Author(s), under exclusive licence to Springer Nature Limited 2024.
2024
Authors
Gonçalves, T; Almada Lobo, B;
Publication
Journal of Revenue and Pricing Management
Abstract
Traditional revenue management systems are built under the assumption of independent demand per fare. The fare adjustment theory is a methodology to adjust fares that allows for the continued use of optimization algorithms and seat inventory control methods, even with the shift toward dependent demand. Since accurate demand forecasts are a key input to this methodology, it is reasonable to assume that for a scenario with uncertainties it may deliver suboptimal performance. Particularly, during and after COVID-19, airlines faced striking challenges in demand forecasting. This study demonstrates, firstly, the theoretical dominance of the fare adjustment theory under perfect conditions. Secondly, it lacks robustness to forecast errors. A Monte Carlo simulation replicating a revenue management system under mild assumptions indicates that a forecast error of ±20% can potentially prompt a necessity to adjust the margin employed in the fare adjustment theory by -10%. Moreover, a tree-based machine learning model highlights the forecast error as the predominant factor, with bias playing an even more pivotal role than variance. An out-of-sample study indicates that the predictive model steadily outperforms the fare adjustment theory. © The Author(s), under exclusive licence to Springer Nature Limited 2024.
2024
Authors
Oliveira, MA; Guimaraes, L; Borges, JL; Almada-Lobo, B;
Publication
MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2023, PT I
Abstract
Maintaining process quality is one of the biggest challenges manufacturing industries face, as production processes have become increasingly complex and difficult to monitor effectively in today's manufacturing contexts. Reliance on skilled operators can result in suboptimal solutions, impacting process quality. In doing so, the importance of quality monitoring and diagnosis methods cannot be undermined. Existing approaches have limitations, including assumptions, prior knowledge requirements, and unsuitability for certain data types. To address these challenges, we present a novel unsupervised monitoring and detection methodology to monitor and evaluate the evolution of a quality characteristic's degradation. To measure the degradation we created a condition index that effectively captures the quality characteristic's mean and scale shifts from the company's specification levels. No prior knowledge or data assumptions are required, making it highly flexible and adaptable. By transforming the unsupervised problem into a supervised one and utilising historical production data, we employ logistic regression to predict the quality characteristic's conditions and diagnose poor condition moments by taking advantage of the model's interpretability. We demonstrate the methodology's application in a glass container production process, specifically monitoring multiple defective rates. Nonetheless, our approach is versatile and can be applied to any quality characteristic. The ultimate goal is to provide decision-makers and operators with a comprehensive view of the production process, enabling better-informed decisions and overall product quality improvement.
2024
Authors
Hora, J; Marta, CFB; Camanho, A; Galvao, T;
Publication
INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 4, WORLDCIST 2023
Abstract
This study estimates alighting stops and transfers from entry-only Automatic Fare Collection (AFC) data. The methodology adopted includes two main steps: an implementation of the Trip Chaining Method (TCM) to estimate the alighting stops from AFC records and the subsequent application of criteria for the identification of transfers. For each pair of consecutive AFC records on the same smart card, a transfer is identified considering a threshold for the walking distance, a threshold for the time required to perform an activity, and the validation of different boarding routes. This methodology was applied to the case study of Porto, Portugal, considering all trips performed by a set of 19999 smart cards over one year. The results of this methodology allied with visualization techniques allowed to study Origin-Destination (OD) patterns by type of day, seasonally, and by user frequency, each analyzed at the stop level and at the geographic area level.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.