Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRIIS

2024

Empowering intermediate cities: cost-effective heritage preservation through satellite remote sensing and deep learning

Authors
Rodríguez Antuñano, I; Sousa, JJ; Bakon, M; Ruiz Armenteros, AM; Martínez Sánchez, J; Riveiro, B;

Publication
INTERNATIONAL JOURNAL OF REMOTE SENSING

Abstract
In the capitalist rush to attract more visitors, cities are committing significant resources to heritage conservation, driven by the substantial economic benefits generated by the tourism industry. However, less famous or less well-resourced cities, often with smaller populations, also known as intermediary cities, find it difficult to allocate funds to protect their most significant heritage sites. In this conservation context, intermediary cities, often on the periphery or 'at the margins', can fill the gaps and needs of urbanism through a better strategic understanding of the challenges of global touristification, thus this research provides urban planning tools for local governments with limited resources to preserve their architectural heritage through remote sensing, for its advantages in terms of lower economic cost, as a valuable monitoring tool to effectively identify high-vulnerability sites that require priority attention in the conservation of architectural heritage. In other words, it allows for a reduction in the territory of those areas located 'at the margins' in terms of urban planning and management, by approaching the territorial, urban, architectural and tourism problems from a transdisciplinary perspective in the preservation of the architectural heritage. This study explores the application of optical (Sentinel-2) using neural networks for classifying the land cover and radar (Sentinel-1 and PAZ) satellite images to obtain the ground motion as a geotechnical risk study, together with geospatial data, for the monitoring of architectural heritage in intermediate cities. Focusing on the districts of Bragan & ccedil;a and Guarda in Portugal, the approach allows the direct identification of vulnerable architectural heritage, identifying 9 highly-vulnerable areas using PAZ data and 7 areas using Sentinel-1 data. Furthermore, this work provides an understanding of the potential and limitations of these technologies in heritage preservation because compares the processing results of freely accessible medium-resolution Sentinel-1 radar imagery with the high-resolution radar images from the innovative PAZ satellite.

2024

Detection of Leak Areas in Vineyard Irrigation Systems Using UAV-Based Data

Authors
Pádua, L; Marques, P; Dinis, LT; Moutinho Pereira, J; Sousa, JJ; Morais, R; Peres, E;

Publication
DRONES

Abstract
Water is essential for maintaining plant health and optimal growth in agriculture. While some crops depend on irrigation, others can rely on rainfed water, depending on regional climatic conditions. This is exemplified by grapevines, which have specific water level requirements, and irrigation systems are needed. However, these systems can be susceptible to damage or leaks, which are not always easy to detect, requiring meticulous and time-consuming inspection. This study presents a methodology for identifying potential damage or leaks in vineyard irrigation systems using RGB and thermal infrared (TIR) imagery acquired by unmanned aerial vehicles (UAVs). The RGB imagery was used to distinguish between grapevine and non-grapevine pixels, enabling the division of TIR data into three raster products: temperature from grapevines, from non-grapevine areas, and from the entire evaluated vineyard plot. By analyzing the mean temperature values from equally spaced row sections, different threshold values were calculated to estimate and map potential leaks. These thresholds included the lower quintile value, the mean temperature minus the standard deviation (Tmean-sigma), and the mean temperature minus two times the standard deviation (Tmean-2 sigma). The lower quintile threshold showed the best performance in identifying known leak areas and highlighting the closest rows that need inspection in the field. This approach presents a promising solution for inspecting vineyard irrigation systems. By using UAVs, larger areas can be covered on-demand, improving the efficiency and scope of the inspection process. This not only reduces water wastage in viticulture and eases grapevine water stress but also optimizes viticulture practices.

2024

Assessing the Impact of Clearing and Grazing on Fuel Management in a Mediterranean Oak Forest through Unmanned Aerial Vehicle Multispectral Data

Authors
Padua, L; Castro, JP; Castro, J; Sousa, JJ; Castro, M;

Publication
DRONES

Abstract
Climate change has intensified the need for robust fire prevention strategies. Sustainable forest fuel management is crucial in mitigating the occurrence and rapid spread of forest fires. This study assessed the impact of vegetation clearing and/or grazing over a three-year period in the herbaceous and shrub parts of a Mediterranean oak forest. Using high-resolution multispectral data from an unmanned aerial vehicle (UAV), four flight surveys were conducted from 2019 (pre- and post-clearing) to 2021. These data were used to evaluate different scenarios: combined vegetation clearing and grazing, the individual application of each method, and a control scenario that was neither cleared nor purposely grazed. The UAV data allowed for the detailed monitoring of vegetation dynamics, enabling the classification into arboreal, shrubs, herbaceous, and soil categories. Grazing pressure was estimated through GPS collars on the sheep flock. Additionally, a good correlation (r = 0.91) was observed between UAV-derived vegetation volume estimates and field measurements. These practices proved to be efficient in fuel management, with cleared and grazed areas showing a lower vegetation regrowth, followed by areas only subjected to vegetation clearing. On the other hand, areas not subjected to any of these treatments presented rapid vegetation growth.

2024

Combining UAV-Based Multispectral and Thermal Infrared Data with Regression Modeling and SHAP Analysis for Predicting Stomatal Conductance in Almond Orchards

Authors
Guimaraes, N; Sousa, JJ; Couto, P; Bento, A; Padua, L;

Publication
REMOTE SENSING

Abstract
Understanding and accurately predicting stomatal conductance in almond orchards is critical for effective water-management strategies, especially under challenging climatic conditions. In this study, machine-learning (ML) regression models trained on multispectral (MSP) and thermal infrared (TIR) data acquired from unmanned aerial vehicles (UAVs) are used to address this challenge. Through an analysis of spectral indices calculated from UAV-based data and feature-selection methods, this study investigates the predictive performance of three ML models (extra trees, ET; stochastic gradient descent, SGD; and extreme gradient boosting, XGBoost) in predicting stomatal conductance. The results show that the XGBoost model trained with both MSP and TIR data had the best performance (R2 = 0.87) and highlight the importance of integrating surface-temperature information in addition to other spectral indices to improve prediction accuracy, up to 11% more when compared to the use of only MSP data. Key features, such as the green-red vegetation index, chlorophyll red-edge index, and the ratio between canopy temperature and air temperature (Tc-Ta), prove to be relevant features for model performance and highlight their importance for the assessment of water stress dynamics. Furthermore, the implementation of Shapley additive explanations (SHAP) values facilitates the interpretation of model decisions and provides valuable insights into the contributions of the features. This study contributes to the advancement of precision agriculture by providing a novel approach for stomatal conductance prediction in almond orchards, supporting efforts towards sustainable water management in changing environmental conditions.

2024

Advancements in Remote Sensing Imagery Applications for Precision Management in Olive Growing: A Systematic Review

Authors
Marques, P; Padua, L; Sousa, JJ; Fernandes Silva, A;

Publication
REMOTE SENSING

Abstract
This systematic review explores the role of remote sensing technology in addressing the requirements of sustainable olive growing, set against the backdrop of growing global food demands and contemporary environmental constraints in agriculture. The critical analysis presented in this document assesses different remote sensing platforms (satellites, manned aircraft vehicles, unmanned aerial vehicles and terrestrial equipment) and sensors (RGB, multispectral, thermal, hyperspectral and LiDAR), emphasizing their strategic selection based on specific study aims and geographical scales. Focusing on olive growing, particularly prominent in the Mediterranean region, this article analyzes the diverse applications of remote sensing, including the management of inventory and irrigation; detection/monitoring of diseases and phenology; and estimation of crucial parameters regarding biophysical parameters, water stress indicators, crop evapotranspiration and yield. Through a global perspective and insights from studies conducted in diverse olive-growing regions, this review underscores the potential benefits of remote sensing in shaping and improving sustainable agricultural practices, mitigating environmental impacts and ensuring the economic viability of olive trees.

2024

Versatile method for grapevine row detection in challenging vineyard terrains using aerial imagery

Authors
Padua, L; Chojka, A; Morais, R; Peres, E; Sousa, JJ;

Publication
COMPUTERS AND ELECTRONICS IN AGRICULTURE

Abstract
Accurate detection and differentiation of grapevine canopies from other vegetation, along with individual grapevine row identification, pose significant challenges in precision viticulture (PV), especially within irregularly structured vineyards shaped by natural terrain slopes. This study employs aerial imagery captured by unmanned aerial vehicles (UAVs) and introduces an image processing methodology that relies on the orthorectified raster data obtained through UAVs. The proposed method adopts a data-driven approach that combines visible indices and elevation data to achieve precise grapevine row detection. Thoroughly tested across various vineyard configurations, including irregular and terraced landscapes, the findings underscore the method's effectiveness in identifying grapevine rows of diverse shapes and configurations. This capability is crucial for accurate vineyard monitoring and management. Furthermore, the method enables clear differentiation between inter-row spaces and grapevine vegetation, representing a fundamental advancement for comprehensive vineyard analysis and PV planning. This study contributes to the field of PV by providing a reliable tool for grapevine row detection and vineyard feature classification. The proposed methodology is applicable to vineyards with varying layouts, offering a versatile solution for enhancing precision viticulture practices.

  • 27
  • 356