2024
Authors
Joana Santos; Mariana Ferraz; Ana Pinto; Luis F. Rocha; Carlos M. Costa; Ana C. Simões; Klass Bombeke; M.A.P. Vaz;
Publication
International Symposium on Occupational Safety and Hygiene: Proceedings Book of the SHO2023
Abstract
2024
Authors
Sousa, JJ; Lin, JH; Wang, Q; Liu, G; Fan, JH; Bai, SB; Zhao, HL; Pan, HY; Wei, WJ; Rittlinger, V; Mayrhofer, P; Sonnenschein, R; Steger, S; Reis, LP;
Publication
GEO-SPATIAL INFORMATION SCIENCE
Abstract
Remote sensing, particularly satellite-based, can play a valuable role in monitoring areas prone to geohazards. The high spatial and temporal coverage provided by satellite data can be used to reconstruct past events and continuously monitor sensitive areas for potential hazards. This paper presents a range of techniques and methods that were applied for in-depth analysis and utilization of Earth observation data, with a particular emphasis on: (1) detecting mining subsidence, where a novel approach is proposed by combining an improved U-Net model and Interferometry Synthetic Aperture Radar (InSAR) technology. The results showed that the Efficient Channel Attention (ECA) U-Net model performed better than the U-Net (baseline) model in terms of Mean Intersection over Union (MIoU) and Intersection over Union (IoU) indicators; (2) monitoring water conservancy and hydropower engineering. The Xiaolangdi multipurpose dam complex was monitored using Small BAsline Subsets (SBAS) InSAR method on Sentinel-1 time series data and four small regions with high deformation rates were identified on the slope of the reservoir bank on the north side. The dam body also showed obvious deformation with a velocity exceeding 60 mm/a; (3) the evaluation of the potential of InSAR results to integrate monitoring and warning systems for valuable heritage and architectural preservation. The overall outcome of these methods showed that the use of Artificial Intelligence (AI) techniques in combination with InSAR data leads to more efficient analysis and interpretation, resulting in improved accuracy and prompt identification of potential hazards; and (4) finally, this study also presents a method for detecting landslides in mountainous regions, using optical imagery. The new temporal landslide detection method is evaluated over a 7-year analysis period and unlike conventional bi-temporal change detection methods, this approach does not depend on any prior-knowledge and can potentially detect landslides over extended periods of time such as decades.
2024
Authors
Guimaraes, N; Fraga, H; Sousa, JJ; Pádua, L; Bento, A; Couto, P;
Publication
AGRIENGINEERING
Abstract
Almonds are becoming a central element in the gastronomic and food industry worldwide. Over the last few years, almond production has increased globally. Portugal has become the third most important producer in Europe, where this increasing trend is particularly evident. However, the susceptibility of almond trees to changing climatic conditions presents substantial risks, encompassing yield reduction and quality deterioration. Hence, yield forecasts become crucial for mitigating potential losses and aiding decisionmakers within the agri-food sector. Recent technological advancements and new data analysis techniques have led to the development of more suitable methods to model crop yields. Herein, an innovative approach to predict almond yields in the Tras-os-Montes region of Portugal was developed, by using machine learning regression models (i.e., the random forest regressor, XGBRegressor, gradient boosting regressor, bagging regressor, and AdaBoost regressor), coupled with remote sensing data obtained from different satellite platforms. Satellite data from both proprietary and free platforms at different spatial resolutions were used as features in the study (i.e., the GSMP: 11.13 km, Terra: 1 km, Landsat 8: 30 m, Sentinel-2: 10 m, and PlanetScope: 3 m). The best possible combination of features was analyzed and hyperparameter tuning was applied to enhance the prediction accuracy. Our results suggest that high-resolution data (PlanetScope) combined with irrigation information, vegetation indices, and climate data significantly improves almond yield prediction. The XGBRegressor model performed best when using PlanetScope data, reaching a coefficient of determination (R2) of 0.80. However, alternative options using freely available data with lower spatial resolution, such as GSMaP and Terra MODIS LST, also showed satisfactory performance (R2 = 0.68). This study highlights the potential of integrating machine learning models and remote sensing data for accurate crop yield prediction, providing valuable insights for informed decision support in the almond sector, contributing to the resilience and sustainability of this crop in the face of evolving climate dynamics.
2024
Authors
Bakon, M; Teixeira, AC; Padua, L; Morais, R; Papco, J; Kubica, L; Rovnak, M; Perissin, D; Sousa, JJ;
Publication
REMOTE SENSING
Abstract
Synthetic aperture radar (SAR) technology has emerged as a pivotal tool in viticulture, offering unique capabilities for various applications. This study provides a comprehensive overview of the current state-of-the-art applications of SAR in viticulture, highlighting its significance in addressing key challenges and enhancing viticultural practices. The historical evolution and motivations behind SAR technology are also provided, along with a demonstration of its applications within viticulture, showcasing its effectiveness in various aspects of vineyard management, including delineating vineyard boundaries, assessing grapevine health, and optimizing irrigation strategies. Furthermore, future perspectives and trends in SAR applications in viticulture are discussed, including advancements in SAR technology, integration with other remote sensing techniques, and the potential for enhanced data analytics and decision support systems. Through this article, a comprehensive understanding of the role of SAR in viticulture is provided, along with inspiration for future research endeavors in this rapidly evolving field, contributing to the sustainable development and optimization of vineyard management practices.
2024
Authors
López, A; Ogayar, CJ; Feito, FR; Sousa, JJ;
Publication
REMOTE SENSING
Abstract
Classifying grapevine varieties is crucial in precision viticulture, as it allows for accurate estimation of vineyard row growth for different varieties and ensures authenticity in the wine industry. This task can be performed with time-consuming destructive methods, including data collection and analysis in the laboratory. In contrast, unmanned aerial vehicles (UAVs) offer a markedly more efficient and less restrictive method for gathering hyperspectral data, even though they may yield data with higher levels of noise. Therefore, the first task is the processing of these data to correct and downsample large amounts of data. In addition, the hyperspectral signatures of grape varieties are very similar. In this study, we propose the use of a convolutional neural network (CNN) to classify seventeen different varieties of red and white grape cultivars. Instead of classifying individual samples, our approach involves processing samples alongside their surrounding neighborhood for enhanced accuracy. The extraction of spatial and spectral features is addressed with (1) a spatial attention layer and (2) inception blocks. The pipeline goes from data preparation to dataset elaboration, finishing with the training phase. The fitted model is evaluated in terms of response time, accuracy and data separability and is compared with other state-of-the-art CNNs for classifying hyperspectral data. Our network was proven to be much more lightweight by using a limited number of input bands (40) and a reduced number of trainable weights (560 k parameters). Hence, it reduced training time (1 h on average) over the collected hyperspectral dataset. In contrast, other state-of-the-art research requires large networks with several million parameters that require hours to be trained. Despite this, the evaluated metrics showed much better results for our network (approximately 99% overall accuracy), in comparison with previous works barely achieving 81% OA over UAV imagery. This notable OA was similarly observed over satellite data. These results demonstrate the efficiency and robustness of our proposed method across different hyperspectral data sources.
2024
Authors
Couto, D; Davies, S; Sousa, J; Cunha, A;
Publication
Procedia Computer Science
Abstract
Interferometric Synthetic Aperture Radar (InSAR) revolutionizes surface study by measuring precise ground surface changes. Phase unwrapping, a key challenge in InSAR, involves removing ambiguity in measured phase. Deep learning algorithms like Generative Adversarial Networks (GANs) offer a potential solution for simplifying the unwrapping process. This work evaluates GANs for InSAR phase unwrapping, replacing SNAPHU with GANs. GANs achieve significantly faster processing times (2.38 interferograms per minute compared to SNAPHU's 0.78 interferograms per minute) with minimal quality degradation. A comparison of SBAS results shows that approximately 84% of GANs points are within 3 millimeters of SNAPHU. These results represent a significant advancement in phase unwrapping methods. While this experiment does not declare a definitive winner, it demonstrates that GANs are a viable alternative in certain scenarios and may replace SNAPHU as the preferred unwrapping method. © 2024 The Author(s). Published by Elsevier B.V.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.