2023
Authors
Amoura, Y; Torres, S; Lima, J; Pereira, AI;
Publication
Lecture Notes in Networks and Systems
Abstract
The future is envisaged to have renewable energy resources replacing conventional sources of energy like fossil fuels. In this direction wind and solar energy is emerging to be a vital source of green energy. Although these resources are a promising aspect in providing clean and cheap electrical energy, one demerit is that it is intermittent and therefore unpredictable. This intermittent nature poses a challenge in maintaining the balance between generation and demand of electrical energy thus adversely affecting the system control. Also, the electrical energy companies involved in selling by participating in the electricity pool market need highly accurate solar and wind energy predictions for maximizing their profit. These issues demand a tool for accurate prediction of generation. This paper proposes machine learning prediction models for wind and solar irradiation. For this, a case study is done considering weather data of Malviya National Institute of Technology in Jaipur used to train the regression models. The best-trained model is tested with unseen data and shown to have reasonably good accuracy in predicting wind speed and solar irradiation. A comparative study of regression model performances is done. It is shown that Gaussian Process Regression-based prediction for solar irradiation and the Support Vector Machine outperforms the trained model for the wind speed predictions. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
2023
Authors
Biondo, E; Brito, T; Nakano, A; Lima, J;
Publication
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST
Abstract
Indoor Air Quality (IAQ) describes the air quality of a room, and it refers to the health and comfort of the occupants. Typically, people spend around 90% of their time in indoor environments where the concentration of air pollutants and, occasionally, more than 100 times higher than outdoor levels. According to the World Health Organization (WHO), indoor air pollution is responsible for the death of 3.8 million people annually. It has been indicated that IAQ in residential areas or buildings is significantly affected by three primary factors, they are outdoor air quality, human activity in buildings, and building and construction materials. In this context, this work consists of a real-time IAQ system to monitor thermal comfort and gas concentration. The system has a data acquisition stage, captured by the WSN with a set of sensors that measures the data and send it to be stored on the InfluxDB database and displayed on Grafana. A Linear Regression (LR) algorithm was used to predict the behavior of the measured parameters, scoring up to 99.7% of precision. Thereafter, prediction data is stored on InfluxDB in a new database and displayed on Grafana. In this way, it is possible to monitor the actual measurement data and prediction data in real-time. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.
2023
Authors
de Castro, GGR; Berger, GS; Cantieri, A; Teixeira, M; Lima, J; Pereira, AI; Pinto, MF;
Publication
AGRICULTURE-BASEL
Abstract
Unmanned aerial vehicles (UAV) are a suitable solution for monitoring growing cultures due to the possibility of covering a large area and the necessity of periodic monitoring. In inspection and monitoring tasks, the UAV must find an optimal or near-optimal collision-free route given initial and target positions. In this sense, path-planning strategies are crucial, especially online path planning that can represent the robot's operational environment or for control purposes. Therefore, this paper proposes an online adaptive path-planning solution based on the fusion of rapidly exploring random trees (RRT) and deep reinforcement learning (DRL) algorithms applied to the generation and control of the UAV autonomous trajectory during an olive-growing fly traps inspection task. The main objective of this proposal is to provide a reliable route for the UAV to reach the inspection points in the tree space to capture an image of the trap autonomously, avoiding possible obstacles present in the environment. The proposed framework was tested in a simulated environment using Gazebo and ROS. The results showed that the proposed solution accomplished the trial for environments up to 300 m3 and with 10 dynamic objects.
2023
Authors
Lewin, GF; Fabro, JA; Lima, J; de Oliveira, AS; Rohrich, RF;
Publication
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1
Abstract
Special care must be taken when considering robots designed to operate collaboratively, such as a swarm, to prevent these agents from being damaged due to unwanted collisions. This work proposes integrating techniques used to move robots, using the Robot Operating System (ROS) and Python's Scikit-Fuzzy module. Thus, this work developed a fuzzy-controlled collaborative obstacle avoidance system for a type of robot whose dynamics are based on motors' vibration. Thus, these robots were designed to participate in a swarm, and the collision must be avoided. In the search for navigation stability, optimal values were sought for the engines' pulse width modulation (PWM).
2023
Authors
Azevedo, BF; Costa, L; Brito, T; Lima, J; Pereira, I;
Publication
AIP Conference Proceedings
Abstract
Forests worldwide have been suffering from fires damages, provoking incalculable losses in fauna and flora, economic losses, people and animals' deaths, among other problems. To avoid forest fires catastrophes, it is fundamental to develop innovative operations, such as a forest fire monitoring system. This work concentrates efforts on defining the optimum sensor allocation in a forest fires monitoring system based on a wireless sensor network. Thus, a bi-objective mathematical model is developed to solve the problem, in which the first objective consists of minimising the forest fire hazard of a given forest region, and the second objective refers to the sensors spreading into this region. The developed mathematical model was solved by genetic algorithm and the results demonstrated that the methodology was capable of presenting suitable solutions for the problem. © 2023 American Institute of Physics Inc.. All rights reserved.
2023
Authors
Azevedo, BF; Alvelos, F; Rocha, AC; Brito, T; Lima, J; Pereira, I;
Publication
Springer Proceedings in Mathematics and Statistics
Abstract
Forests worldwide have been devastated by fires. Forest fires cause incalculable damage to fauna and flora. In addition, a forest fire can lead to the death of people and financial damage in general, among other problems. To avoid wildfire catastrophes is fundamental to detect fire ignitions in the early stages, which can be achieved by monitoring ignitions through sensors. This work presents an integer programming approach to decide where to locate such sensors to maximize the coverage provided by them, taking into account different types of sensors, fire hazards, and technological and budget constraints. We tested the proposed approach in a real-world forest with around 7500 locations to be covered and about 1500 potential locations for sensors, showing that it allows obtaining optimal solutions in less than 20 min. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.