Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRIIS

2023

Topological map-based approach for localization and mapping memory optimization

Authors
Aguiar, AS; dos Santos, FN; Santos, LC; Sousa, AJ; Boaventura Cunha, J;

Publication
JOURNAL OF FIELD ROBOTICS

Abstract
Robotics in agriculture faces several challenges, such as the unstructured characteristics of the environments, variability of luminosity conditions for perception systems, and vast field extensions. To implement autonomous navigation systems in these conditions, robots should be able to operate during large periods and travel long trajectories. For this reason, it is essential that simultaneous localization and mapping algorithms can perform in large-scale and long-term operating conditions. One of the main challenges for these methods is maintaining low memory resources while mapping extensive environments. This work tackles this issue, proposing a localization and mapping approach called VineSLAM that uses a topological mapping architecture to manage the memory resources required by the algorithm. This topological map is a graph-based structure where each node is agnostic to the type of data stored, enabling the creation of a multilayer mapping procedure. Also, a localization algorithm is implemented, which interacts with the topological map to perform access and search operations. Results show that our approach is aligned with the state-of-the-art regarding localization precision, being able to compute the robot pose in long and challenging trajectories in agriculture. In addition, we prove that the topological approach innovates the state-of-the-art memory management. The proposed algorithm requires less memory than the other benchmarked algorithms, and can maintain a constant memory allocation during the entire operation. This consists of a significant innovation, since our approach opens the possibility for the deployment of complex 3D SLAM algorithms in real-world applications without scale restrictions.

2023

Using Deep Reinforcement Learning for Navigation in Simulated Hallways

Authors
Leao, G; Almeida, F; Trigo, E; Ferreira, H; Sousa, A; Reis, LP;

Publication
2023 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
Reinforcement Learning (RL) is a well-suited paradigm to train robots since it does not require any previous information or database to train an agent. This paper explores using Deep Reinforcement Learning (DRL) to train a robot to navigate in maps containing different sorts of obstacles and which emulate hallways. Training and testing were performed using the Flatland 2D simulator and a Deep Q-Network (DQN) provided by OpenAI gym. Different sets of maps were used for training and testing. The experiments illustrate how well the robot is able to navigate in maps distinct from the ones used for training by learning new behaviours (namely following walls) and highlight the key challenges when solving this task using DRL, including the appropriate definition of the state space and reward function, as well as of the stopping criteria during training.

2023

Deep Learning-Based Tree Stem Segmentation for Robotic Eucalyptus Selective Thinning Operations

Authors
da Silva, DQ; Rodrigues, TF; Sousa, AJ; dos Santos, FN; Filipe, V;

Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II

Abstract
Selective thinning is a crucial operation to reduce forest ignitable material, to control the eucalyptus species and maximise its profitability. The selection and removal of less vigorous stems allows the remaining stems to grow healthier and without competition for water, sunlight and nutrients. This operation is traditionally performed by a human operator and is time-intensive. This work simplifies selective thinning by removing the stem selection part from the human operator's side using a computer vision algorithm. For this, two distinct datasets of eucalyptus stems (with and without foliage) were built and manually annotated, and three Deep Learning object detectors (YOLOv5, YOLOv7 and YOLOv8) were tested on real context images to perform instance segmentation. YOLOv8 was the best at this task, achieving an Average Precision of 74% and 66% on non-leafy and leafy test datasets, respectively. A computer vision algorithm for automatic stem selection was developed based on the YOLOv8 segmentation output. The algorithm managed to get a Precision above 97% and a 81% Recall. The findings of this work can have a positive impact in future developments for automatising selective thinning in forested contexts.

2023

ENHANCING SAMPLE EFFICIENCY FOR TEMPERATURE CONTROL IN DED WITH REINFORCEMENT LEARNING AND MOOSE FRAMEWORK

Authors
Sousa, J; Darabi, R; Sousa, A; Reis, LP; Brueckner, F; Reis, A; de Sá, JC;

Publication
PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 3

Abstract
Directed Energy Deposition (DED) is crucial in additive manufacturing for various industries like aerospace, automotive, and biomedical. Precise temperature control is essential due to high-power lasers and dynamic environmental changes. Employing Reinforcement Learning (RL) can help with temperature control, but challenges arise from standardization and sample efficiency. In this study, a model-based Reinforcement Learning (MBRL) approach is used to train a DED model, improving control and efficiency. Computational models evaluate melt pool geometry and temporal characteristics during the process. The study employs the Allen-Cahn phase field (AC-PF) model using the Finite Element Method (FEM) with the Multi-physics Object-Oriented Simulation Environment (MOOSE). MBRL, specifically Dyna-Q+, outperforms traditional Q-learning, requiring fewer samples. Insights from this research aid in advancing RL techniques for laser metal additive manufacturing.

2023

Modelling of a Vibration Robot Using Localization Ground Truth Assisted by ArUCo Markers

Authors
Matos, D; Lima, J; Rohrich, R; Oliveira, A; Valente, A; Costa, P; Costa, P;

Publication
ROBOTICS IN NATURAL SETTINGS, CLAWAR 2022

Abstract
Simulators have been increasingly used on development and tests on several areas. They allow to speed up the development without damage and no extra costs. On realistic simulators, where kinematics play an important role, the modelling process should be imported for each component to be accurately simulated. Some robots are not yet modelled, as for example the Monera. This paper presents a model of a small vibration robot (Monera) that is acquired in a developed test-bed. A localisation ground truth is used to acquire the position of the Monera with actuating it. Linear and angular speeds acquired from real experiments allow to validate the proposed methodology.

2023

Hybrid Legged-Wheeled Robotic Platforms: Survey on Existing Solutions

Authors
Moreira, J; Soares, IN; Lima, J; Pinto, VH; Costa, P;

Publication
ROBOTICS IN NATURAL SETTINGS, CLAWAR 2022

Abstract
This survey analyses and compares ten different robots capable of hybrid locomotion in an attempt to elucidate the readers on several aspects of importance when designing and implementing a legged-wheeled vehicle. With this purpose in mind, the robots are compared based on their goals, kinematic configurations, joint specifications and overall performance. In this text, their variety and versatility is presented, justifying their use in real-world scenarios.

  • 42
  • 366