2023
Authors
Copinet, B; Flügge, F; Margetich, LC; Vandepitte, M; Petrache, PL; Duarte, AJ; Malheiro, B; Ribeiro, C; Justo, J; Silva, MF; Ferreira, P; Guedes, P;
Publication
Lecture Notes in Educational Technology
Abstract
Intensive cattle farming as a means of protein production contributes with the direct emission of greenhouse gases and the indirect contamination of soil and water. The public awareness towards this issue is growing in western cultures, leading to the stagnation of meat consumption and to the willingness to adopt alternative sustainable sources of protein. A solution is to farm insects as they present a reduced environmental impact and constitute a well-known source of protein. However, for westerners, eating insects implies a cultural change as they are still seen as dirty and disgusting. In 2022, a team of five EPS@ISEP students chose to design a solution for this problem followed by the assembly and test of the corresponding proof-of-concept prototype. They decided to design a home farming kit to grow mealworms driven by ethical, sustainable and the market needs. Exploring the insect life-cycle, the kit provides protein for humans and animals, chitin for soil bacteria and frass for plants. It can also be used as an educational tool for children to learn about sustainability, social responsibility and insect life-cycles, helping to overtake the cultural barrier against insect eating from a young age. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
2023
Authors
Blaschke, L; Blauw, B; Herlange, C; Pyciak, A; Zschocke, J; Duarte, AJ; Malheiro, B; Ribeiro, C; Justo, J; Silva, MF; Ferreira, P; Guedes, P;
Publication
Lecture Notes in Educational Technology
Abstract
Tourists nowadays tend to avoid tourist traps and are looking for engaging ways to explore cities in the limited time they have. Standard options to explore cities seldom offer a combination between efficiency and fun. Furthermore, a search for an exploration city app returns an unlimited supply of lookalike websites and apps, all claiming to be the best. This paper reports the development of QRioCity, an efficient and exciting way to explore cities, by the “Dragonics” student team. QRioCity offers users the option to sign up for a playful tour through the city of Porto using a public kiosk with an interactive touchscreen. There is no limit to the number of teams playing simultaneously nor there is need to provide personal data. The teams are led through the city using clues and are proposed assignments, like scanning QR codes, to earn points. At the end of the game, every team receives discount coupons for local shops or stores depending on their score, even when they play alone. This way QRioCity helps tourists enjoying the local city life while offering municipalities a chance to strengthen their local economy. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
2023
Authors
Martins, A; Lucas, J; Costelha, H; Neves, C;
Publication
JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION
Abstract
This paper examines the idea of Industry 4.0 from the perspective of the molds industry, a vital industry in today's industrial panorama. Several technologies, particularly in the area of machining equipment, have been introduced as a result of the industry's constant modernization. This technological diversity makes automatic interconnection with production management software extremely difficult, as each brand and model requires different, mostly proprietary, interfaces and communication protocols. In the methodology presented in this paper, a development of monitoring solutions for machining devices is defined supporting the leading equipment and operations used by molds industry companies. OPC UA is employed for high-level communication between the various systems for a standardized approach. The approach combines various machine interfaces on a single system to cover a significant subset of machining equipment currently used by the molds industry, as a key result of this paper and given the variety of monitoring systems and communication protocols. This type of all-in-one approach will provide production managers with the information they need to monitor and improve the complete manufacturing process.
2023
Authors
Vrancic, D; Oliveira, PM; Bisták, P; Huba, M;
Publication
MATHEMATICS
Abstract
The main objective of this work was to develop a tuning method for PID controllers suitable for use in an industrial environment. Therefore, a computationally simple tuning method is presented based on a simple experiment on the process without requiring any input from the user. Essentially, the method matches the closed-loop response to the response obtained in the steady-state change experiment. The proposed method requires no prior knowledge of the process and, in its basic form, only the measurement of the change in the steady state of the process in the manually or automatically performed experiment is needed, which is not limited to step-like process input signals. The user does not need to provide any prior information about the process or any information about the closed-loop behavior. Although the control loop dynamics is not defined by the user, it is still known in advance because it is implicitly defined by the process open-loop response. Therefore, no exaggerated control signal swings are expected when the reference signal changes, which is an advantage in many industrial plants. The presented method was designed to be computationally undemanding and can be easily implemented on less powerful hardware, such as lower-end PLC controllers. The work has shown that the proposed model-free method is relatively insensitive to process output noise. Another advantage of the proposed tuning method is that it automatically handles the tuning of highly delayed processes, since the method discards the initial process response. The simplicity and efficiency of the tuning method is demonstrated on several process models and on a laboratory thermal system. The method was also compared to a tuning method based on a similar closed-loop criterion. In addition, all necessary Matlab/Octave files for the calculation of the controller parameters are provided online.
2023
Authors
Pereira, SD; Pires, EJS; Oliveira, PBD;
Publication
ALGORITHMS
Abstract
A new algorithm based on the ant colony optimization (ACO) method for the multiple traveling salesman problem (mTSP) is presented and defined as ACO-BmTSP. This paper addresses the problem of solving the mTSP while considering several salesmen and keeping both the total travel cost at the minimum and the tours balanced. Eleven different problems with several variants were analyzed to validate the method. The 20 variants considered three to twenty salesmen regarding 11 to 783 cities. The results were compared with best-known solutions (BKSs) in the literature. Computational experiments showed that a total of eight final results were better than those of the BKSs, and the others were quite promising, showing that with few adaptations, it will be possible to obtain better results than those of the BKSs. Although the ACO metaheuristic does not guarantee that the best solution will be found, it is essential in problems with non-deterministic polynomial time complexity resolution or when used as an initial bound solution in an integer programming formulation. Computational experiments on a wide range of benchmark problems within an acceptable time limit showed that compared with four existing algorithms, the proposed algorithm presented better results for several problems than the other algorithms did.
2023
Authors
Cardoso, A; Oliveira, PM; Sa, J;
Publication
LEARNING IN THE AGE OF DIGITAL AND GREEN TRANSITION, ICL2022, VOL 1
Abstract
Teaching and learning are processes that must accompany the digital transition, which is one of the biggest challenges we currently face, along with the green transition. The digital transition in education is a process with several challenges that must count on the involvement and collaboration of all stakeholders, contributing to the schools of the future. For this, technology plays a decisive role, and must be integrated into classes as a relevant tool to develop and implement different types of experiments, motivating the students towards STEM areas. In this context, a project financed by IFAC made it possible to use pocket laboratories in different high schools, encouraging teachers to prepare activities supported by this equipment, stimulating students to be interested in engineering topics. This article presents the approach followed in one high school and discusses the results obtained, highlighting the usefulness and opportunity of using pocket labs, and low-cost equipment in general, in school activities, which can promote the STEM areas and, in particular, the engineering courses.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.