Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRIIS

2024

AIMSM - A Mechanism to Optimize Systems with Multiple AI Models: A Case Study in Computer Vision for Autonomous Mobile Robots

Authors
Ferreira, BG; de Sousa, AJM; Reis, LP; de Sousa, AA; Rodrigues, R; Rossetti, R;

Publication
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part III

Abstract
This article proposes the Artificial Intelligence Models Switching Mechanism (AIMSM), a novel approach to optimize system resource utilization by allowing systems to switch AI models during runtime in dynamic environments. Many real-world applications utilize multiple data sources and various AI models for different purposes. In many of those applications, every AI model doesn’t have to operate all the time. The AIMSM strategically allows the system to activate and deactivate these models, focusing on system resource optimization. The switching of each AI model can be based on any information, such as context or previous results. In the case study of an autonomous mobile robot performing computer vision tasks, the AIMSM helps the system to achieve a significant increment in performance, with a 50% average increase in frames per second (FPS) rate, for this specific case study, assuming that no erroneous switching occurred. Experimental results have demonstrated that the AIMSM can improve system resource utilization efficiency when properly implemented, optimize overall resource consumption, and enhance system performance. The AIMSM presented itself as a better alternative to permanently loading all the models simultaneously, improving the adaptability and functionality of the systems. It is expected that using the AIMSM will yield a performance improvement that is particularly relevant to systems with multiple AI models of a complex nature, where such models do not need to be all continuously executed or systems that will benefit from lower resource usage. Code is available at https://github.com/BrunoGeorgevich/AIMSM. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

JEMA: A Joint Embedding Framework for Scalable Co-Learning with Multimodal Alignment

Authors
Sousa, J; Darabi, R; Sousa, A; Brueckner, F; Reis, LP; Reis, A;

Publication
CoRR

Abstract

2024

Hierarchical Reinforcement Learning and Evolution Strategies for Cooperative Robotic Soccer

Authors
Santos, B; Cardoso, A; Ledo, G; Reis, LP; Sousa, A;

Publication
2024 7TH IBERIAN ROBOTICS CONFERENCE, ROBOT 2024

Abstract
Artificial I ntelligence ( AI) a nd M achine Learning are frequently used to develop player skills in robotic soccer scenarios. Despite the potential of deep reinforcement learning, its computational demands pose challenges when learning complex behaviors. This work explores less demanding methods, namely Evolution Strategies (ES) and Hierarchical Reinforcement Learning (HRL), for enhancing coordination and cooperation between two agents from the FC Portugal 3D Simulation Soccer Team, in RoboCup. The goal is for two robots to learn a high-level skill that enables a robot to pass the ball to its teammate as quickly as possible. Results show that the trained models under-performed in a traditional robotic soccer two-agent task and scored perfectly in a much simpler one. Therefore, this work highlights that while these alternative methods can learn trivial cooperative behavior, more complex tasks are difficult t o learn.

2024

Using Deep Learning for 2D Primitive Perception with a Noisy Robotic LiDAR

Authors
Brito, A; Sousa, P; Couto, A; Leao, G; Reis, LP; Sousa, A;

Publication
2024 7TH IBERIAN ROBOTICS CONFERENCE, ROBOT 2024

Abstract
Effective navigation in mobile robotics relies on precise environmental mapping, including the detection of complex objects as geometric primitives. This work introduces a deep learning model that determines the pose, type, and dimensions of 2D primitives using a mobile robot equipped with a noisy LiDAR sensor. Simulated experiments conducted in Webots involved randomly placed primitives, with the robot capturing point clouds which were used to progressively build a map of the environment. Two mapping techniques were considered, a deterministic and probabilistic (Bayesian) mapping, and different levels of noise for the LiDAR were compared. The maps were used as input to a YOLOv5 network that detected the position and type of the primitives. A cropped image of each primitive was then fed to a Convolutional Neural Network (CNN) that determined the dimensions and orientation of a given primitive. Results show that the primitive classification achieved an accuracy of 95% in low noise, dropping to 85% under higher noise conditions, while the prediction of the shapes' dimensions had error rates from 5% to 12%, as the noise increased. The probabilistic mapping approach improved accuracy by 10-15% compared to deterministic methods, showcasing robustness to noise levels up to 0.1. Therefore, these findings highlight the effectiveness of probabilistic mapping in enhancing detection accuracy for mobile robot perception in noisy environments.

2024

Enhancing Forest Fire Detection and Monitoring Through Satellite Image Recognition: A Comparative Analysis of Classification Algorithms Using Sentinel-2 Data

Authors
Brito, T; Pereira, AI; Costa, P; Lima, J;

Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT II, OL2A 2023

Abstract
Worldwide, forests have been harassed by fire in recent years. Either by human intervention or other reasons, the history of the burned area is increasing considerably, harming fauna and flora. It is essential to detect an early ignition for fire-fighting authorities can act quickly, decreasing the impact of forest damage impacts. The proposed system aims to improve nature monitoring and improve the existing surveillance systems through satellite image recognition. The soil recognition via satellite images can determine the sensor modules' best position and provide crucial input information for artificial intelligence-based systems. For this, satellite images from the Sentinel-2 program are used to generate forest density maps as updated as possible. Four classification algorithms make the Tree Cover Density (TCD) map, consisting of the Gaussian Mixture Model (GMM), Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbors (K-NN), which identify zones by training known regions. The results demonstrate a comparison between the algorithms through their performance in recognizing the forest, grass, pavement, and water areas by Sentinel-2 images.

2024

Energy Efficiency Analysis of Differential and Omnidirectional Robotic Platforms: A Comparative Study

Authors
Chellal, AA; Braun, J; Bonzatto, L Jr; Faria, M; Kalbermatter, RB; Gonçalves, J; Costa, P; Lima, J;

Publication
SYNERGETIC COOPERATION BETWEEN ROBOTS AND HUMANS, VOL 1, CLAWAR 2023

Abstract
As robots have limited power sources. Energy optimization is essential to ensure an extension for their operating periods without needing to be recharged, thus maximizing their uptime and minimizing their running costs. This paper compares the energy consumption of different mobile robotic platforms, including differential, omnidirectional 3-wheel, omnidirectional 4-wheel, and Mecanum platforms. The comparison is based on the RobotAtFactory 4.0 competition that typically takes place during the Portuguese Robotics Open. The energy consumption from the batteries for each platform is recorded and compared. The experiments were conducted in a validated simulation environment with dynamic and friction models to ensure that the platforms operated at similar speeds and accelerations and through a 5200 mAh battery simulation. Overall, this study provides valuable information on the energy consumption of different mobile robotic platforms. Among other findings, differential robots are the most energy-efficient robots, while 4-wheel omnidirectional robots may offer a good balance between energy efficiency and maneuverability.

  • 7
  • 359