2022
Authors
Lima, J; Kalbermatter, RB; Braun, J; Brito, T; Berger, G; Costa, P;
Publication
2022 LATIN AMERICAN ROBOTICS SYMPOSIUM (LARS), 2022 BRAZILIAN SYMPOSIUM ON ROBOTICS (SBR), AND 2022 WORKSHOP ON ROBOTICS IN EDUCATION (WRE)
Abstract
The experimental component is an essential method in Engineering education. Sometimes the availability of laboratories and components is compromised, and the COVID19 pandemic worsened the situation. Resorting to an accurate simulation seems to help this process by allowing students to develop the work, program, test, and validate it. Moreover, it lowers the development time and cost of the prototyping stages of a robotics project. As a multidisciplinary area, robotics requires simulation environments with essential characteristics, such as dynamics, connection to hardware (embedded systems), and other applications. Thus, this paper presents the Simulation environment of SimTwo, emphasizing previous publications with models of sensors, actuators, and simulation scenes. The simulator can be used for free, and the source code is available to the community. Proposed scenes and examples can inspire the development of other simulation scenes to be used in electrical and mechanical Engineering projects.
2022
Authors
Magalhães, SC; Moreira, AP; Costa, P;
Publication
CoRR
Abstract
2022
Authors
Gomes, NM; Martins, FN; Lima, J; Wörtche, H;
Publication
Automation
Abstract
2022
Authors
Amoura, Y; Pereira, AI; Lima, J;
Publication
SUSTAINABLE ENERGY FOR SMART CITIES, SESC 2021
Abstract
Future power systems encourage the use of renewable energy resources, among them wind power is of great interest, but its power output is intermittent in nature which can affect the stability of the power system and increase the risk of blackouts. Therefore, a forecasting model of the wind speed is essential for the optimal operation of a power supply with an important share of wind energy conversion systems. In this paper, two wind speed forecasting models based on multiple meteorological measurements of wind speed and temperature are proposed and compared according to their mean squared error (MSE) value. The first model concerns the artificial intelligence based on neural network (ANN) where several network configurations are proposed to achieve the most suitable structure of the problem, while the other model concerned the Adaptive Neuro-Fuzzy Inference System (ANFIS). To enhance the results accuracy, the invalid input samples are filtered. According to the computational results of the two models, the ANFIS has delivered more accurate outputs characterized by a reduced mean squared error value compared to the ANN-based model.
2022
Authors
Chella, AA; Lima, J; Goncalves, J; Fernandes, FP; Pacheco, MF; Monteiro, FC; Valente, A;
Publication
CONTROLO 2022
Abstract
The proposed work was developed as part of the SmartHealth project, which aims to advance upper body rehabilitation by granting a robotic alternative to reduce the limitations of physical therapy while conferring more intensive and personalized therapy sessions for patients. The use of robots permits therapists to be relieved of laborious and repetitive tasks while supplying feedback for patients and physiotherapists through automatic recordings. The proposed strategy is to develop new python-based software that controls the robot, collects the patient's forces and muscle activity in real-time, and stores them for future analysis while providing visual feedback, thus allowing session optimization. These features permit the physiotherapist to objectively perceive the patient's performance during exercise. This solution is implemented in robots already commercialized in the industrial field. These kinds of robots are generally mass-produced in production lines at a relatively low cost and with great flexibility.
2022
Authors
Valente, A; Costa, C; Pereira, L; Soares, B; Lima, J; Soares, S;
Publication
AGRICULTURE-BASEL
Abstract
In view of the actual climate change scenario felt across the globe, resource management is crucial, especially with regard to water. In this sense, continuous monitoring of plant water status is essential to optimise not only crop management but also water resources. Currently, monitoring of vine water status is done through expensive and time-consuming methods that do not allow continuous monitoring, which is especially inconvenient in places with difficult access. The aim of the developed work was to install three groups of sensors (Environmental, Plant and Soil) in a vineyard and connect them through LoRaWAN protocol for data transmission. The results demonstrate that the implemented system is capable of continuous data communication without data loss. The reduced cost and superior range of LoRaWAN compared to WiFi or Bluetooth is especially important for applications in remote areas where cellular networks have little coverage. Altogether, this methodology provides a remote, continuous and more effective method to monitor plant water status and is capable of supporting producers in more efficient management of their farms and water resources.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.