Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Francisco Carvalho Silva

2023

A Machine Learning Approach for Predicting Microsatellite Instability using RNA-seq

Authors
Simões, M; Pereira, T; Silva, F; Machado, JMF; Oliveira, HP;

Publication
IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023, Istanbul, Turkiye, December 5-8, 2023

Abstract
Microsatellite Instability (MSI) is an important biomarker in cancer patients, showing a defective DNA mismatch repair system. Its detection allows the use of immunotherapy to treat cancer, an approach that is revolutionizing cancer treatment. MSI is especially relevant for three types of cancer: Colon Adenocarcinoma (COAD), Stomach Adenocarcinoma (STAD), and Uterus corpus endometrial cancer (UCEC). In this work, learning algorithms were employed to predict MSI using RNA-seq data from The Cancer Genome Atlas (TCGA) database, with a focus on the selection of the most informative genomic features. The Multi-Layer Perceptron (MLP) obtained the best score (AUC = 98.44%), showing that it is possible to exploit information from RNA-seq data to find relevant relationships with the instability levels of microsatellites (MS). The accurate prediction of MSI with transcription data from cancer patients will help with the correct determination of MSI status and adequate prescription of immunotherapy, creating more precise and personalized patient care. At the genetic level, the study revealed a high expression of genes related to cell regulation functions, and a low expression of genes responsible for Mismatch Repair functions, in patients with high instability.

2024

Radiological Medical Imaging Annotation and Visualization Tool

Authors
Teiga, I; Sousa, JV; Silva, F; Pereira, T; Oliveira, HP;

Publication
UNIVERSAL ACCESS IN HUMAN-COMPUTER INTERACTION, PT III, UAHCI 2024

Abstract
Significant medical image visualization and annotation tools, tailored for clinical users, play a crucial role in disease diagnosis and treatment. Developing algorithms for annotation assistance, particularly machine learning (ML)-based ones, can be intricate, emphasizing the need for a user-friendly graphical interface for developers. Many software tools are available to meet these requirements, but there is still room for improvement, making the research for new tools highly compelling. The envisioned tool focuses on navigating sequences of DICOM images from diverse modalities, including Magnetic Resonance Imaging (MRI), Computed Tomography (CT) scans, Ultrasound (US), and X-rays. Specific requirements involve implementing manual annotation features such as freehand drawing, copying, pasting, and modifying annotations. A scripting plugin interface is essential for running Artificial Intelligence (AI)-based models and adjusting results. Additionally, adaptable surveys complement graphical annotations with textual notes, enhancing information provision. The user evaluation results pinpointed areas for improvement, including incorporating some useful functionalities, as well as enhancements to the user interface for a more intuitive and convenient experience. Despite these suggestions, participants praised the application's simplicity and consistency, highlighting its suitability for the proposed tasks. The ability to revisit annotations ensures flexibility and ease of use in this context.

2024

A review of machine learning methods for cancer characterization from microbiome data

Authors
Teixeira, M; Silva, F; Ferreira, RM; Pereira, T; Figueiredo, C; Oliveira, HP;

Publication
NPJ PRECISION ONCOLOGY

Abstract
Recent studies have shown that the microbiome can impact cancer development, progression, and response to therapies suggesting microbiome-based approaches for cancer characterization. As cancer-related signatures are complex and implicate many taxa, their discovery often requires Machine Learning approaches. This review discusses Machine Learning methods for cancer characterization from microbiome data. It focuses on the implications of choices undertaken during sample collection, feature selection and pre-processing. It also discusses ML model selection, guiding how to choose an ML model, and model validation. Finally, it enumerates current limitations and how these may be surpassed. Proposed methods, often based on Random Forests, show promising results, however insufficient for widespread clinical usage. Studies often report conflicting results mainly due to ML models with poor generalizability. We expect that evaluating models with expanded, hold-out datasets, removing technical artifacts, exploring representations of the microbiome other than taxonomical profiles, leveraging advances in deep learning, and developing ML models better adapted to the characteristics of microbiome data will improve the performance and generalizability of models and enable their usage in the clinic.

2025

Causal representation learning through higher-level information extraction

Authors
Silva, F; Oliveira, HP; Pereira, T;

Publication
ACM COMPUTING SURVEYS

Abstract
The large gap between the generalization level of state-of-the-art machine learning and human learning systems calls for the development of artificial intelligence (AI) models that are truly inspired by human cognition. In tasks related to image analysis, searching for pixel-level regularities has reached a power of information extraction still far from what humans capture with image-based observations. This leads to poor generalization when even small shifts occur at the level of the observations. We explore a perspective on this problem that is directed to learning the generative process with causality-related foundations, using models capable of combining symbolic manipulation, probabilistic reasoning, and pattern recognition abilities. We briefly review and explore connections of research from machine learning, cognitive science, and related fields of human behavior to support our perspective for the direction to more robust and human-like artificial learning systems.

  • 5
  • 5