Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CESE

2024

Application of Meta Learning in Quality Assessment of Wearable Electrocardiogram Recordings

Authors
Huerta, A; Martínez-Rodrigo, A; Guimarâes, M; Carneiro, D; Rieta, JJ; Alcaraz, R;

Publication
ADVANCES IN DIGITAL HEALTH AND MEDICAL BIOENGINEERING, VOL 2, EHB-2023

Abstract
The high rates of mortality provoked by cardiovascular disorders (CVDs) have been rated by the OMS in the top among non-communicable diseases, killing about 18 million people annually. It is crucial to detect arrhythmias or cardiovascular events in an early way. For that purpose, novel portable acquisition devices have allowed long-term electrocardiographic (ECG) recording, being the most common way to discover arrhythmias of a random nature such as atrial fibrillation (AF). Nonetheless, the acquisition environment can distort or even destroy the ECG recordings, hindering the proper diagnosis of CVDs. Thus, it is necessary to assess the ECG signal quality in an automatic way. The proposed approach exploits the feature and meta-feature extraction of 5-s ECG segments with the ability of machine learning classifiers to discern between high- and low-quality ECG segments. Three different approaches were tested, reaching values of accuracy close to 83% using the original feature set and improving up to 90% when all the available meta-features were utilized. Moreover, within the high-quality group, the segments belonging to the AF class outperformed around 7% until a rate over 85% when the meta-features set was used. The extraction of meta-features improves the accuracy even when a subset of meta-features is selected from the whole set.

2024

Study of Digital Maturity Models Considering the European Digital Innovation Hubs Guidelines: A Critical Overview

Authors
Babo, D; Pereira, C; Carneiro, D;

Publication
INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 2, WORLDCIST 2023

Abstract
Nowadays the concept of digitalization and Industry 4.0 is more and more important, and organizations must improve and adapt their processes and systems in order to keep up to date with the latest paradigm. In this context, there are multiple developed Maturity Models (MMs) to help companies on the processes of evaluating their digital maturity and defining a roadmap to achieve their full potential. However, this is a subject in constant evolution and most of the available MMs don't fill all the needs that a company might have in its transformation process. Thus, European Digital Innovation Hubs (EDIH) arose to support companies on the process of responding to digital challenges and becoming more competitive. Supported by the European Commission and the Digital Transformation Accelerator, they use tools to measure the digital maturity progress of their customers. This paper analyzes several MMs publicly available and compares them to the guidelines provided to the EDIH.

2024

Lean and Green Manufacturing Operationalization Through Multi-Layer Stream Mapping - Lean&Green 4.0

Authors
Pecas, P; Lopes, J; Jorge, D; Sahul, AK; Baptista, AJ; Leiter, M;

Publication
ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS-PRODUCTION MANAGEMENT SYSTEMS FOR VOLATILE, UNCERTAIN, COMPLEX, AND AMBIGUOUS ENVIRONMENTS, APMS 2024, PT III

Abstract
Lean and green (L&G) manufacturing in Industry 4.0 (I4.0) has brought many advantages in manufacturing industries by minimizing waste and maximizing efficiency with integration of renewable energy sources and sustainable materials. Multi-layer Stream Mapping (MSM) is a new framework for the performance assessment of complex manufacturing processes. MSM is used for multi-domain analysis of manufacturing processes to assess resources, and processes, that are used to identify Non-ValueAdded (NVA) procedures or steps that consume unnecessary time and resources, and/or release emissions and waste that can no longer be reused or recycled to be eliminated or replaced to create a Value Added (VA) process flow that avoids waste in a clean, green and environmental friendly manner. This paper presents the implementation of the L&G strategy through MSM in metal working production systems. In metalworking production systems, the variables of operational performance and resources consumption considered are process time, number of operators, consumables, raw material, and energy. These can be suitably used for reduction in water emissions, gas emissions, solid waste and scrap generated in metalworking production systems.

2023

A Resectorization of Fire Brigades in the North of Portugal

Authors
Lima, MM; de Sousa, FS; Öztürk, EG; Rocha, PF; Rodrigues, AM; Ferreira, JS; Nunes, AC; Lopes, IC; Oliveira, CT;

Publication
Springer Proceedings in Mathematics and Statistics

Abstract
Sectorization consists of grouping the basic units of a large territory to deal with a complex problem involving different criteria. Resectorization rearranges a current sectorization avoiding substantial changes, given a set of conditions. The paper considers the case of the distribution of geographic areas of fire brigades in the north of Portugal so that they can protect and rescue the population surrounding the fire stations. Starting from a current sectorization, assuming the geographic and population characteristics of the areas and the fire brigades’ response capacity, we provide an optimized resectorization considering two objectives: to reduce the rescue time by maximizing the compactness criterion, and to avoid overload situations by maximizing the equilibrium criterion. The solution method is based on the Non-dominated Sorting Genetic Algorithm (NSGA-II). Finally, computational results are presented and discussed. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2023

Developing a System for Sectorization: An Overview

Authors
Göksu Öztürk, E; Soares de Sousa, F; Margarida Lima, M; Filipe Rocha, P; Maria Rodrigues, A; Soeiro Ferreira, J; Catarina Nunes, A; Cristina Lopes, I; Teles Oliveira, C;

Publication
Springer Proceedings in Mathematics and Statistics

Abstract
Sectorization is the partition of a set or region into smaller parts, taking into account certain objectives. Sectorization problems appear in real-life situations, such as school or health districting, logistic planning, maintenance operations or transportation. The diversity of applications, the complexity of the problems and the difficulty in finding good solutions warrant sectorization as a relevant research area. Decision Support Systems (DSS) are computerised information systems that may provide quick solutions to decision-makers and researchers and allow for observing differences between various scenarios. The paper is an overview of the development of a DSS for Sectorization, its extent, architecture, implementation steps and benefits. It constitutes a quite general system, for it handles various types of problems, which the authors grouped as (i) basic sectorization problems; (ii) sectorization problems with service centres; (iii) re-sectorization problems; and (iv) dynamic sectorization problems. The new DSS is expected to facilitate the resolution of various practitioners’ problems and support researchers, academics and students in sectorization. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2023

Dynamic Sectorization - Conceptualization and Application

Authors
de Sousa, FS; Lima, MM; Öztürk, EG; Rocha, PF; Rodrigues, AM; Ferreira, JS; Nunes, AC; Oliveira, C;

Publication
Lecture Notes in Mechanical Engineering

Abstract
Sectorization is the division of a large area, territory or network into smaller parts considering one or more objectives. Dynamic sectorization deals with situations where it is convenient to discretize the time horizon in a certain number of periods. The decisions will not be isolated, and they will consider the past. The application areas are diverse and increasing due to uncertain times. This work proposes a conceptualization of dynamic sectorization and applies it to a distribution problem with variable demand. Furthermore, Genetic Algorithm is used to obtain solutions for the problem since it has several criteria; Analytical Hierarchy Process is used for the weighting procedure. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • 12
  • 217