Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Renato Jorge Neves

2016

Reuse and Integration of Specification Logics: The Hybridisation Perspective

Authors
Barbosa, LS; Martins, MA; Madeira, A; Neves, R;

Publication
Theoretical Information Reuse and Integration

Abstract
Hybridisation is a systematic process along which the characteristic features of hybrid logic, both at the syntactic and the semantic levels, are developed on top of an arbitrary logic framed as an institution. It also captures the construction of first-order encodings of such hybridised institutions into theories in first-order logic. The method was originally developed to build suitable logics for the specification of reconfigurable software systems on top of whatever logic is used to describe local requirements of each system’s configuration. Hybridisation has, however, a broader scope, providing a fresh example of yet another development in combining and reusing logics driven by a problem from Computer Science. This paper offers an overview of this method, proposes some new extensions, namely the introduction of full quantification leading to the specification of dynamic modalities, and exemplifies its potential through a didactical application. It is discussed how hybridisation can be successfully used in a formal specification course in which students progress from equational to hybrid specifications in a uniform setting, integrating paradigms, combining data and behaviour, and dealing appropriately with systems evolution and reconfiguration. © Springer International Publishing Switzerland 2016.

2016

Asymmetric Combination of Logics is Functorial: A Survey

Authors
Neves, R; Madeira, A; Barbosa, LS; Martins, MA;

Publication
Recent Trends in Algebraic Development Techniques - 23rd IFIP WG 1.3 International Workshop, WADT 2016, Gregynog, UK, September 21-24, 2016, Revised Selected Papers

Abstract
Asymmetric combination of logics is a formal process that develops the characteristic features of a specific logic on top of another one. Typical examples include the development of temporal, hybrid, and probabilistic dimensions over a given base logic. These examples are surveyed in the paper under a particular perspective—that this sort of combination of logics possesses a functorial nature. Such a view gives rise to several interesting questions. They range from the problem of combining translations (between logics), to that of ensuring property preservation along the process, and the way different asymmetric combinations can be related through appropriate natural transformations.

2016

Hybrid Automata as Coalgebras

Authors
Neves, R; Barbosa, LS;

Publication
THEORETICAL ASPECTS OF COMPUTING - ICTAC 2016

Abstract
Able to simultaneously encode discrete transitions and continuous behaviour, hybrid automata are the de facto framework for the formal specification and analysis of hybrid systems. The current paper revisits hybrid automata from a coalgebraic point of view. This allows to interpret them as state-based components, and provides a uniform theory to address variability in their definition, as well as the corresponding notions of behaviour, bisimulation, and observational semantics.

2018

Languages and models for hybrid automata: A coalgebraic perspective

Authors
Neves, R; Barbosa, LS;

Publication
THEORETICAL COMPUTER SCIENCE

Abstract
We study hybrid automata from a coalgebraic point of view. We show that such a perspective supports a generic theory of hybrid automata with a rich palette of definitions and results. This includes, among other things, notions of bisimulation and behaviour, state minimisation techniques, and regular expression languages.

2018

Hierarchical Hybrid Logic

Authors
Madeira, A; Neves, R; Martins, MA; Barbosa, LS;

Publication
ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE

Abstract
We introduce HHL, a hierarchical variant of hybrid logic. We study first order correspondence results and prove a Hennessy-Milner like theorem relating (hierarchical) bisimulation and modal equivalence for HHL. Combining hierarchical transition structures with the ability to refer to specific states at different levels, this logic seems suitable to express and verify properties of hierarchical transition systems, a pervasive semantic structure in Computer Science.

2019

An Adequate While-Language for Hybrid Computation

Authors
Goncharov, S; Neves, R;

Publication
PROCEEDINGS OF THE 21ST INTERNATIONAL SYMPOSIUM ON PRINCIPLES AND PRACTICE OF DECLARATIVE PROGRAMMING (PPDP 2019)

Abstract
Hybrid computation harbours discrete and continuous dynamics in the form of an entangled mixture, inherently present in various natural phenomena and in applications ranging from control theory to microbiology. The emergent behaviours bear signs of both computational and physical processes, and thus present difficulties not only in their analysis, but also in describing them adequately in a structural, well-founded way. In order to tackle these issues and, more generally, to investigate hybridness as a dedicated computational phenomenon, we introduce a while-language for hybrid computation inspired by the fine-grain call-by-value paradigm. We equip it with operational and computationally adequate denotational semantics. The latter crucially relies on a hybrid monad supporting an (Elgot) iteration operator that we developed elsewhere. As an intermediate step, we introduce a more lightweight duration semantics furnished with analogous results and based on a new duration monad that we introduce as a lightweight counterpart to the hybrid monad.

  • 3
  • 6