2023
Authors
Cepa, B; Brito, C; Sousa, A;
Publication
2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG
Abstract
Medical imaging, mainly Magnetic Resonance Imaging (MRI), plays a predominant role in healthcare diagnosis. Nevertheless, the diagnostic process is prone to errors and is conditioned by available medical data, which might be insufficient. A novel solution is resorting to image generation algorithms to address these challenges. Thus, this paper presents a Deep Learning model based on a Deep Convolutional Generative Adversarial Network (DCGAN) architecture. Our model generates 2D MRI images of size 256x256, containing an axial view of the brain with a tumor. The model was implemented using ChainerMN, a scalable and flexible framework that enables faster and parallel training of Deep Learning networks. The images obtained provide an overall representation of the brain structure and the tumoral area and show considerable brain-tumor separation. For this purpose, and owing to their previous state-of-the-art results in general image-generation tasks, we conclude that GAN-based models are a promising approach for medical imaging.
2024
Authors
Cepa, B; Brito, C; Sousa, A;
Publication
Abstract
2024
Authors
Oliveira, A; Cepa, B; Brito, C; Sousa, A;
Publication
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.