Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Davide Rua Carneiro

2021

Optimization of the grapes reception process

Authors
Carneiro, D; Pereira, J; Silva, ECE;

Publication
NEURAL COMPUTING & APPLICATIONS

Abstract
Grapes reception is a key process in wine production. The harvest days are extremely challenging days in managing the reception of the grapes, as the winery needs to deal with the non-uniform arrival of the grapes, while guaranteeing suppliers' satisfaction and wine quality. The best management of the resources of the suppliers (i.e., grapes and trucks) and winery (i.e., grain-tanks and pressing machines) must be ensured. In this paper, the underlying optimization problem for grape reception is solved by developing a genetic algorithm (GA) tailored for this specific challenge. The results of this algorithm are compared with a FIFO policy for a typical scenario that occurs on the harvest days of a real winery. Additionally, different scenarios are simulated to assess the validity and quality of the solutions found. The results show that, using modest computational resources, it is possible to achieve better solutions with the proposed GA. This allows for the algorithm to be used in real time, even whenever plant conditions change significantly (e.g., when a new truck arrives, when a machine fails). Furthermore, the trucks and grapes waiting time for the results using the developed GA are significantly smaller than the ones observed using a FIFO approach.

2022

Gamification of the Learning Process

Authors
Carneiro, D; Caceres, P; Carvalho, MR;

Publication
INTERACTION DESIGN AND ARCHITECTURES

Abstract

2023

Using Segmentation to Improve Machine Learning Performance in Human-in-the-Loop Systems

Authors
Carneiro, D; Carvalho, M;

Publication
INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2

Abstract
The expectations of Machine Learning systems are becoming increasingly demanding, namely in what concerns the diversity of applications, the expected accuracy, and the pressure for results. However, there are cases in which Human experts are needed to label the data, which may have a significant cost in terms of human resources and time. In these cases, it is often best to learn on-the-fly, without expecting for the whole data to be labeled. Often, it is desirable to guide the Human annotators into focusing on the more relevant instances: this constitutes the so-called active learning. In this paper we propose an approach in which a clustering algorithm is used to find groups of similar instances. Then, the procedure is guided with the objective of favoring the annotation of the groups that are under-represented in the labeled dataset. Results show that this approach leads to models that are, over time, more accurate and reliable.

2022

A Framework for Online Education in Computer Science Degrees with a Focus on Motivation

Authors
Carneiro, D; Barbosa, R;

Publication
METHODOLOGIES AND INTELLIGENT SYSTEMS FOR TECHNOLOGY ENHANCED LEARNING

Abstract
The way students learn changed significantly over the past two years, due to the current pandemic. However, this change was neither desired not planed beforehand. As a result, in many cases, it may have been undertaken without the appropriate care. In this paper we propose a framework for online education tailored for Computer Science degrees. Its goals are twofold: to avoid disruptive changes by providing a familiar and supportive structure for teaching/learning activities, and to motivate Students to learn autonomously, despite their reduced contact with their peers or the Teacher.

2022

Ethics, Transparency, Fairness and the Responsibility of Artificial Intelligence

Authors
Carneiro, D; Veloso, P;

Publication
NEW TRENDS IN DISRUPTIVE TECHNOLOGIES, TECH ETHICS AND ARTIFICIAL INTELLIGENCE: THE DITTET COLLECTION

Abstract
Artificial Intelligence (AI), in all its different sub-fields, has grown significantly over the past years. When compared with other scientific or technological fields, this can almost be seen as a revolution. Nonetheless, as in other revolutions, not all that revolves around AI evolved at the same pace. As a consequence, many serious legal and ethical issues on the use of Artificial Intelligence are presently being raised. This paper addresses the main root causes for these problems from a technical standpoint, and then analyzes the legal and ethical framework. Finally, the paper describes a range of techniques and methods that can be used to address the identified problems, namely by ensuring transparency, fairness, equality, explanability and avoiding bias or discrimination. The field is presently at a tipping point, which can either lead to an avoidance of Artificial Intelligence due to fear or lack of regulation, or to a wide adoption supported by increased transparency and more human-centered approaches. Given the recent developments addressed in this paper, the paper argues in favor of a tendency towards the latter.

2021

Optimizing Model Training in Interactive Learning Scenarios

Authors
Carneiro, D; Guimarães, M; Carvalho, M; Novais, P;

Publication
Trends and Applications in Information Systems and Technologies - Volume 1, WorldCIST 2021, Terceira Island, Azores, Portugal, 30 March - 2 April, 2021.

Abstract
In the last years, developments in data collection, storing, processing and analysis technologies resulted in an unprecedented use of data by organizations. The volume and variety of data, combined with the velocity at which decisions must now be taken and the dynamism of business environments, pose new challenges to Machine Learning. Namely, algorithms must now deal with streaming data, concept drift, distributed datasets, among others. One common task nowadays is to update or re-train models when data changes, as opposed to traditional one-shot batch systems, in which the model is trained only once. This paper addresses the issue of when to update or re-train a model, by proposing an approach to predict the performance metrics of the model if it were trained at a given moment, with a specific set of data. We validate the proposed approach in an interactive Machine Learning system in the domain of fraud detection. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • 15
  • 24