Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Ignacio Gil

2023

PV Hosting Capacity in LV Networks by Combining Customer Voltage Sensitivity and Reliability Analysis

Authors
Kisuule, M; Ndawula, MB; Gu, C; Hernando-Gil, I;

Publication
Energies

Abstract
This paper investigates voltage regulation in low voltage (LV) networks under different loading conditions of a supply network, with increased levels of distributed generation, and in particular with a diverse range of locational solar photovoltaic (PV) penetration. This topic has been researched extensively, with beneficial impacts expected up to a certain point when reverse power flows begin to negatively impact customers connected to the distribution system. In this paper, a voltage-based approach that utilizes novel voltage-based reliability indices is proposed to analyse the risk and reliability of the LV supply feeder, as well as its PV hosting capacity. The proposed indices are directly comparable to results from a probabilistic reliability assessment. The operation of the network is simulated for different PV scenarios to investigate the impacts of increased PV penetration, the location of PV on the feeder, and loading conditions of the MV supply network on the reliability results. It can be seen that all reliability indices improve with increased PV penetration levels when the supply network is heavily loaded and conversely deteriorate when the supply network is lightly loaded. Moreover, bus voltages improve when an on-load tap changer is fitted at the secondary trans-former which leads to better reliability performance as the occurrence and duration of low voltage violations are reduced in all PV scenarios. The approach in this paper is opposed to the conventional reliability assessment, which considers sustained interruptions to customers caused by failure of network components, and thus contributes to a comprehensive analysis of quality of service by considering transient events (i.e., voltage related) in the LV distribution network.

2023

Two-Stage Co-Optimization for Utility-Social Systems With Social-Aware P2P Trading

Authors
Zhao P.; Li S.; Hu P.J.H.; Cao Z.; Gu C.; Yan X.; Huo D.; Hernando-Gil I.;

Publication
IEEE Transactions on Computational Social Systems

Abstract
Effective utility system management is fundamental and critical for ensuring the normal activities, operations, and services in cities and urban areas. In that regard, the advanced information and communication technologies underpinning smart cities enable close linkages and coordination of different subutility systems, which is now attracting research attention. To increase operational efficiency, we propose a two-stage optimal co-management model for an integrated urban utility system comprised of water, power, gas, and heating systems, namely, integrated water-energy hubs (IWEHs). The proposed IWEH facilitates coordination between multienergy and water sectors via close energy conversion and can enhance the operational efficiency of an integrated urban utility system. In particular, we incorporate social-aware peer-to-peer (P2P) resource trading in the optimization model, in which operators of an IWEH can trade energy and water with other interconnected IWEHs. To cope with renewable generation and load uncertainties and mitigate their negative impacts, a two-stage distributionally robust optimization (DRO) is developed to capture the uncertainties, using a semidefinite programming reformulation. To demonstrate our model's effectiveness and practical values, we design representative case studies that simulate four interconnected IWEH communities. The results show that DRO is more effective than robust optimization (RO) and stochastic optimization (SO) for avoiding excessive conservativeness and rendering practical utilities, without requiring enormous data samples. This work reveals a desirable methodological approach to optimize the water-energy-social nexus for increased economic and system-usage efficiency for the entire (integrated) urban utility system. Furthermore, the proposed model incorporates social participations by citizens to engage in urban utility management for increased operation efficiency of cities and urban areas.

2024

Analysis of Long-Term Indicators in the British Balancing Market

Authors
Cheng S.; Gil I.H.; Flower I.; Gu C.; Li F.;

Publication
IEEE Transactions on Power Systems

Abstract
Proactive participation of uncertain renewable generation in the day-ahead (DA) wholesale market effectively reduces the system marginal price and carbon emissions, whilst significantly increasing the volumes of real-time balancing mechanism prices to ensure system security and stability. To solve the conflicting interests over the two timescales, this article: 1) proposes a novel hierarchical optimization model to align with the actual operation paradigms of the hierarchical market, whereby the capacity allocation matrix is adopted to coordinate the DA and balancing markets; 2) mathematically formulates and quantitatively analyses the long-term driving factors of balancing actions, enabling system operators (SOs) to design efficient and well-functioning market structures to meet economic and environmental targets; 3) empowers renewable generating units and flexible loads to participate in the balancing market (BM) as 'active' actors and enforces the non-discriminatory provision of balancing services. The performance of the proposed model is validated on a modified IEEE 39-bus power system and a reduced GB network. Results reveal that with effective resource allocation in different timescales of the hierarchical market, the drop speed of balancing costs soars while the intermittent generation climbs. The proposed methodology enables SOs to make the most of all resources available in the market and balance the system flexibly and economically. It thus safeguards the climate mitigation pathways against the risks of substantially higher balancing costs.

2024

Cyber Vulnerabilities of Energy Systems

Authors
Zhao, AP; Li, S; Gu, C; Yan, X; Hu, PJ; Wang, Z; Xie, D; Cao, Z; Chen, X; Wu, C; Luo, T; Wang, Z; Hernando-Gil, I;

Publication
IEEE Journal of Emerging and Selected Topics in Industrial Electronics

Abstract

2024

Review of energy management systems and optimization methods for hydrogen-based hybrid building microgrids

Authors
Sarwar, FA; Hernando-Gil, I; Vechiu, I;

Publication
Energy Conversion and Economics

Abstract
AbstractRenewable energy-based microgrids (MGs) strongly depend on the implementation of energy storage technologies to optimize their functionality. Traditionally, electrochemical batteries have been the predominant means of energy storage. However, technological advancements have led to the recognition of hydrogen as a promising solution to address the long-term energy requirements of microgrid systems. This study conducted a comprehensive literature review aimed at analysing and synthesizing the principal optimization and control methodologies employed in hydrogen-based microgrids within the context of building microgrid infrastructures. A comparative assessment was conducted to evaluate the merits and disadvantages of the different approaches. The optimization techniques for energy management are categorized based on their predictability, deployment feasibility, and computational complexity. In addition, the proposed ranking system facilitates an understanding of its suitability for diverse applications. This review encompasses deterministic, stochastic, and cutting-edge methodologies, such as machine learning-based approaches, and compares and discusses their respective merits. The key outcome of this research is the classification of various energy management strategy (EMS) methodologies for hydrogen-based MG, along with a mechanism to identify which methodologies will be suitable under what conditions. Finally, a detailed examination of the advantages and disadvantages of various strategies for controlling and optimizing hybrid microgrid systems with an emphasis on hydrogen utilization is provided.

2018

Reliability analysis on protection devices inclusion in LV residential distribution network

Authors
Muhammad Ridzuan M.I.; Hernando-Gil I.; Djokic S.;

Publication
Journal of Telecommunication, Electronic and Computer Engineering

Abstract
The inclusion and arrangement of protection devices within the LV distribution network often neglected. By exemption of protection devices during network modelling, may result in overestimation of reliability performances. Detail network representation of UK LV residential model is used to assess network reliability performance. The analytical and improved Monte-Carlo Simulation (MCS) approaches are used to estimate system-related reliability indices.

  • 6
  • 6