Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by António Manuel Coelho

2020

Probabilistic impact of electricity tariffs on distribution grids considering adoption of solar and storage technologies

Authors
Heleno, M; Sehloff, D; Coelho, A; Valenzuela, A;

Publication
APPLIED ENERGY

Abstract
This paper models the role of electricity tariffs on the long-term adoption of photovoltaic and storage technologies as well as the consequent impact on the distribution grid. An adoption model that captures the economic rationality of tariff-driven investments and considers the stochastic nature of individual consumers' decisions is proposed. This model is then combined with a probabilistic load flow to evaluate the long-term impacts of the adoption on the voltage profiles of the distribution grid. To illustrate the methodology, different components of the electricity tariffs, including solar compensation mechanisms and time differentiation of Time-of-Use (ToU) rates, are evaluated, using a case study involving a section of a medium-voltage network with 118 nodes.

2021

Network-secure bidding optimization of aggregators of multi-energy systems in electricity, gas, and carbon markets

Authors
Coelho, A; Iria, J; Soares, F;

Publication
APPLIED ENERGY

Abstract
The increasing replacement of conventional generators by variable renewable energy sources is reducing the flexibility of the power system, and consequently reducing its reliability indexes. To compensate for this reduction of flexibility, market participation of aggregators of multi-energy systems has been proposed in the literature. Under this scope, this paper presents a network-secure bidding optimization strategy to assist aggregators of multi-energy systems calculating electricity (energy and reserve), gas and carbon bids, considering multi-energy network constraints. This strategy is a distributed approach based on the alternating direction method of multipliers, where the aggregator collaborates with the operators of electricity, gas and heat networks to calculate network-secure bids. The proposed strategy is benchmarked against two other approaches. The results show that the newly developed strategy computes multi-energy and network-secure bids with execution times that suit the timelines of the electricity, gas, and carbon markets. The joint optimization of multi-energy systems reduced the aggregator's costs by 89% compared to a single energy-vector approach. Furthermore, two sensibility studies were also performed. The first study revealed that in the presence of slow ramp-rate resources (e.g. combined heat and power systems), aggregator's costs can decrease up to 87% when considering slower response times to the secondary reserve signal. In the second study, it was observed that the bidding behavior of the aggregator only starts changing significantly with carbon prices higher than 200euro/tCO2.

2022

Network-secure bidding strategy for aggregators under uncertainty

Authors
Iria, J; Coelho, A; Soares, F;

Publication
SUSTAINABLE ENERGY GRIDS & NETWORKS

Abstract
The widespread adoption of distributed energy resources (DER) is creating an opportunity for aggregators to transform DER flexibility into electricity market services. In a scenario of high DER integration, aggregators will need to coordinate the optimisation of DER with the distribution system operator (DSO) in order to avoid congestion and voltage incursions in the distribution networks. This coordination task is notably complex since both network and DER operation are impacted by multiple sources of uncertainty. To address these challenges, this paper proposes a new bidding strategy for aggregators of prosumers to make robust network-secure bidding decisions in day-ahead energy and reserve markets. The bidding strategy computes robust network-secure bids without jeopardising the data privacy of aggregators and the DSO. The data privacy is preserved by using the alternating direction method of multipliers (ADMM) to decompose a stochastic network-secure bidding problem into bidding and network subproblems and solve them separately and in parallel. The uncertainty of the prosumers is incorporated in the bidding problem through scenarios of load, renewable generation, and DER preferences. Our experiments show that the proposed bidding strategy computes robust bids against distribution network problems, outperforming deterministic and stochastic state-of-the-art bidding strategies in terms of cost and network observability.

2023

Real-time management of distributed multi-energy resources in multi-energy networks

Authors
Coelho, A; Iria, J; Soares, F; Lopes, JP;

Publication
SUSTAINABLE ENERGY GRIDS & NETWORKS

Abstract
The replacement of fossil fuel power plants by variable renewable energy sources is reducing the flexibility of the energy system, which puts at risk its security. Exploiting the flexibility of distributed multi-energy resources through aggregators presents a solution for this problem. In this context, this paper presents a new hierarchical model predictive control framework to assist multi-energy aggregators in the network-secure delivery of multi-energy services traded in electricity, natural gas, green hydrogen, and carbon markets. This work builds upon and complements a previous work from the same authors related to bidding strategies for day-ahead markets - it closes the cycle of aggregators' participation in multi-energy markets, i.e., day-ahead bidding and real-time activation of flexibility services. This new model predictive control framework uses the alternating direction method of multipliers on a rolling horizon to negotiate the network-secure delivery of multi-energy services between aggregators and distribution system operators of electricity, gas, and heat networks. We used the new model predictive control framework to conduct two studies. In the first study, we found that considering multi-energy network constraints at both day-ahead and real-time optimization stages produces the most cost-effective and reliable solution to aggregators, outperforming state-of-the-art approaches in terms of cost and network security. In the second study, we found that the adoption of a green hydrogen policy by multi-energy aggregators can reduce their consumption of natural gas and respective CO2 emissions significantly if carbon and green hydrogen prices are competitive.& COPY; 2023 Elsevier Ltd. All rights reserved.

2023

Evaluation of the economic, technical, and environmental impacts of multi-energy system frameworks in distribution networks

Authors
Coelho, A; Soares, F; Iria, J; Lopes, JP;

Publication
2023 IEEE BELGRADE POWERTECH

Abstract
This paper presents a general comparison between network-secure and network-free optimization frameworks to manage flexible multi-energy resources. Both frameworks were implemented in a test case that includes electricity, gas, and heat distribution networks. Several potential scenarios for the decarbonization of the multi-energy system were simulated. The economic, technical, and environmental impacts were compiled. The network-secure framework is highly recommended to avoid service disruptions due to network violations, but its implementation comes with a price - overall operational costs increase, sometimes substantially.

2023

DSO framework to handle high participation of DER in electricity markets

Authors
Fonseca, NS; Soares, F; Coelho, A; Iria, J;

Publication
2023 19TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM

Abstract
This paper proposes a new decentralized framework for distribution system operators (DSO) to evaluate the network feasibility of the aggregators' bids and remunerate them in case of providing network support services. Compared to other state-of-the-art approaches, this framework is characterized as being more efficient in terms of communication and computational requirements, which is a great advantage for real world applications. The new framework includes a novel optimization model to decide if aggregators' bids should be curtailed or not to ensure network security and minimize DSO costs. To evaluate and compare the proposed DSO framework against the current one, we used the IEEE 69-bus network with three aggregators of distributed energy resources (DER) from the Iberian electricity market. Our experiments show that the proposed DSO framework ensures distribution network security, while the current framework in place in the Iberian Peninsula does not. In addition, we also studied three curtailment policies for the new DSO framework. The results show that minimizing curtailment costs is the most cost-effective policy for the DSO, compared to the other two policies focused on minimizing linear and squared curtailments.

  • 2
  • 3