2010
Authors
Oliveira, L; Lage, A; Clemente, MP; Tuchin, VV;
Publication
SARATOV FALL MEETING 2009: INTERNATIONAL SCHOOL FOR JUNIOR SCIENTISTS AND STUDENTS ON OPTICS, LASER PHYSICS, AND BIOPHOTONICS
Abstract
Skeletal muscle presents an internal fibrous structure. The existence of muscle fibers surrounded by interstitial fluid originates an internal step refractive index profile that causes light scattering. One way to minimize this effect inside a muscle is to perform an optical clearing treatment, using an adequate solution that presents a refractive index higher than the interstitial fluid. We have studied muscle spectral transmittance during sample immersion in propylene glycol. With the collection of transmittance spectra registered during a period of 20 minutes of immersion we could represent spectral transmittance evolution for several wavelengths and verify that the tissue samples have become more translucent. The optical clearing effect created in the tissue samples was characterized by an increase of 45% above the natural transmittance and the variations observed in tissue mass, pH and global refractive index. We also identified the initial mechanisms of agent diffusion into the tissue and consequent tissue dehydration from the spectral transmittance evolution. The histological analysis of variations caused in the internal structure of the tissues permitted to better explain the optical clearing effect created. Considering a mathematical model developed in previous studies, we could estimate the amount of agent that was inserted into the tissue samples.
2010
Authors
Oliveira, L; Lage, A; Pais Clemente, MP; Tuchin, VV;
Publication
JOURNAL OF BIOMEDICAL OPTICS
Abstract
It is known that the fibrous structure of muscle causes light scattering. This phenomenon occurs due to the refractive index discontinuities located between muscle fibers and interstitial fluid. To study the possibility of reducing light scattering inside muscle, we consider its spectral transmittance evolution during an immersion treatment with an optical clearing solution containing ethanol, glycerol, and distilled water. Our methodology consists of registering spectral transmittance of muscle samples while immersed in that solution. With the spectral data collected, we represent the transmittance evolution for some wavelengths during the treatment applied. Additionally, we study the variations that the treatment has caused on the samples regarding tissue refractive index and mass. By analyzing microscopic photographs of tissue cross section, we can also verify changes in the internal arrangement of muscle fibers caused by the immersion treatment. Due to a mathematical model that we develop, we can explain the variations observed in the studied parameters and estimate the amount of optical clearing agent that has diffused into the tissue samples during the immersion treatment. At the end of the study, we observe and explain the improvement in tissue spectral transmittance, which is approximately 65% after 20 min. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3486539]
2010
Authors
Vieira, J; Ferreira, PG; Aguiar, B; Fonseca, NA; Vieira, CP;
Publication
BMC EVOLUTIONARY BIOLOGY
Abstract
Background: Within Rosaceae, the RNase based gametophytic self-incompatibility (GSI) system has been studied at the molecular level in Maloideae and Prunus species that have been diverging for, at least, 32 million years. In order to understand RNase based GSI evolution within this family, comparative studies must be performed, using similar methodologies. Result: It is here shown that many features are shared between the two species groups such as levels of recombination at the S-RNase ( the S-pistil component) gene, and the rate at which new specificities arise. Nevertheless, important differences are found regarding the number of ancestral lineages and the degree of specificity sharing between closely related species. In Maloideae, about 17% of the amino acid positions at the S-RNase protein are found to be positively selected, and they occupy about 30% of the exposed protein surface. Positively selected amino acid sites are shown to be located on either side of the active site cleft, an observation that is compatible with current models of specificity determination. At positively selected amino acid sites, non-conservative changes are almost as frequent as conservative changes. There is no evidence that at these sites the most drastic amino acid changes may be more strongly selected. Conclusions: Many similarities are found between the GSI system of Prunus and Maloideae that are compatible with the single origin hypothesis for RNase based GSI. The presence of common features such as the location of positively selected amino acid sites and lysine residues that may be important for ubiquitylation, raise a number of issues that, in principle, can be experimentally addressed in Maloideae. Nevertheless, there are also many important differences between the two Rosaceae GSI systems. How such features changed during evolution remains a puzzling issue.
2010
Authors
Coelho, JP; Cunha, JB; Oliveira, PD; Pires, ES;
Publication
SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS
Abstract
Modern greenhouse climate controllers are based on models in order to simulate and predict the greenhouse environment behaviour. These models must be able to describe indoor climate process dynamics, which are a function of both the control actions taken and the outside climate. Moreover, if predictive or feedforward control techniques are to be applied, it is necessary to employ models to describe and predict the weather. From all the climate variables, solar radiation is the one with greater impact in the greenhouse heat load. Hence, making good predictions of this physical quantity is of extreme importance. In this paper, the solar radiation is represented as a time-series and a support vector regression model is used to make long term predictions. Results are compared with the ones achieved by using other type of models, both linear and non-linear.
2010
Authors
Petry, MR; Moreira, AP; Braga, RAM; Reis, LP;
Publication
2010 IEEE Conference on Robotics, Automation and Mechatronics, RAM 2010
Abstract
Intelligent wheelchairs operating in dynamic environments need to sense its neighborhood and adapt the control signal, in real-time, to avoid collisions and protect the user. In this paper we propose a robust, real-time obstacle avoidance extension of the classic potential field methodology. Our algorithm is specially adapted to share the wheelchair's control with the user avoiding risky situations. This method relies on the idea of virtual forces, generated by the user command (attractive force) and by the objects detected on each ultrasonic sensor (repulsive forces), acting on the wheelchair. The resultant wheelchair's behavior is obtained by the sum of the attractive force and all the repulsive forces at a given position. Experimental results from drive tests in a cluttered office environment provided statistical evidence that the proposed algorithm is effective to reduce the number of collisions and still improve the user's safety perception. ©2010 IEEE.
2009
Authors
Braga, RAM; Petry, M; Moreira, AP; Reis, LP;
Publication
Lecture Notes in Electrical Engineering
Abstract
Many people with severe disabilities find it difficult or even impossible to use traditional powered wheelchairs independently by manually controlling these electrical devices. Intelligent wheelchairs are a very good solution to assist severely handicapped people who are unable to operate classical electrical wheelchair by themselves in their daily activities. This paper describes a development platform for intelligent wheelchairs called IntellWheels. The intelligent system developed may be added to commercial powered wheelchairs with minimal modifications in a very straightforward manner. The paper describes the concept and design of the platform, including the hardware and software, multimodal input interface and the intelligent wheelchair prototype developed to validate the approach. Preliminary results concerning automatic movement of the IntellWheels prototype are also described showing the autonomous movement capabilities of the prototype. © 2009 Springer-Verlag Berlin Heidelberg.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.