Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CPES

2020

Two-Stage Distributionally Robust Optimization for Energy Hub Systems

Authors
Zhao P.; Gu C.; Huo D.; Shen Y.; Hernando-Gil I.;

Publication
IEEE Transactions on Industrial Informatics

Abstract
Energy hub system (EHS) incorporating multiple energy carriers, storage, and renewables can efficiently coordinate various energy resources to optimally satisfy energy demand. However, the intermittency of renewable generation poses great challenges on optimal EHS operation. This article proposes an innovative distributionally robust optimization model to operate EHS with an energy storage system (ESS), considering the multimodal forecast errors of photovoltaic (PV) power. Both battery and heat storage are utilized to smooth PV output fluctuation and improve the energy efficiency of EHS. This article proposes a novel multimodal ambiguity set to capture the stochastic characteristics of PV multimodality. A two-stage scheme is adopted, where 1) the first stage optimizes EHS operation cost, and 2) the second stage implements real-time dispatch after the realization of PV output uncertainty. The aim is to overcome the conservatism of multimodal distribution uncertainties modeled by typical ambiguity sets and reduce the operation cost of EHS. The presented model is reformulated as a tractable semidefinite programming problem and solved by a constraint generation algorithm. Its performance is extensively compared with widely used normal and unimodal ambiguity sets. The results from this article justify the effectiveness and performance of the proposed method compared to conventional models, which can help EHS operators to economically consume energy and use ESS wisely through the optimal coordination of multienergy carriers.

2020

Probabilistic impact of electricity tariffs on distribution grids considering adoption of solar and storage technologies

Authors
Heleno, M; Sehloff, D; Coelho, A; Valenzuela, A;

Publication
APPLIED ENERGY

Abstract
This paper models the role of electricity tariffs on the long-term adoption of photovoltaic and storage technologies as well as the consequent impact on the distribution grid. An adoption model that captures the economic rationality of tariff-driven investments and considers the stochastic nature of individual consumers' decisions is proposed. This model is then combined with a probabilistic load flow to evaluate the long-term impacts of the adoption on the voltage profiles of the distribution grid. To illustrate the methodology, different components of the electricity tariffs, including solar compensation mechanisms and time differentiation of Time-of-Use (ToU) rates, are evaluated, using a case study involving a section of a medium-voltage network with 118 nodes.

2019

Impact of Load Unbalance on Low Voltage Network Losses

Authors
Nuno Fidalgo, JN; Moreira, C; Cavalheiro, R;

Publication
2019 IEEE MILAN POWERTECH

Abstract
The total losses volume represents a substantial amount of energy and, consequently, a large cost that is often included in the tariffs structure. Uneven connection of single-phase loads is a major cause for three-phase unbalance and a fundamental cause for active power losses, particularly in Low Voltage (LV) networks. This paper analyzes the impact of load unbalance on LV network losses. In the first phase, several load scenarios per phase are considered to characterize how losses depend on load unbalance. The second phase examines the data collected per phase on a set of real networks, aiming at illustrating real-world cases. The third phase analyzes the effect that public lighting and microgeneration may have in the load unbalance and on the subsequent energy losses. The results of this work clearly demonstrate that it is possible to reduce three-phase unbalance (and losses) through a judicious distribution of loads and microgeneration.

2019

Impact of Climate Changes on the Portuguese Energy Generation Mix

Authors
Nuno Fidalgo, JN; Jose, DD; Silva, C;

Publication
2019 16TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET (EEM)

Abstract
Global climate change is currently a focus issue because of its impacts on the most diverse natural systems and, consequently, the development of humanity. The electricity sector is a major contributor to climate change because of its long-standing dependence on fossil fuels. However, the energy paradigm is changing, and renewable sources tend to play an increasingly important role in the energy mix in Portugal. Due to the strong relationship between renewable energies and climate-related natural resources, the climate change phenomenon could have considerable effects on the electricity sector. This paper analyzes the effects of climate change on the energy mix in Portugal in the medium / long term (up to 2050). The proposed methodology is based on the simulation of climate scenarios and projections of installed power by type and consumption. The combinations of these conditions are inputted to an energy accounting simulation tool, able to combine all information and provide a characterization of the system state for each case. The most favorable forecasted scenarios indicate that a fully renewable electricity system is achievable in the medium term, in line with the objectives of the European Union, as long as investments in renewable sources continue to be stimulated in the coming years.

2019

Classification of Buildings Energetic Performance Using Artificial Immune Algorithms

Authors
Alves, JP; Fidalgo, JN;

Publication
SEST 2019 - 2nd International Conference on Smart Energy Systems and Technologies

Abstract
The building sector is responsible for a large share of Europe's energy consumption. Modelling buildings thermal behavior is a key factor for achieving the EU energy efficiency goals. Moreover, it can be used in load forecasting applications, for the prediction of buildings total energy consumption. The first phase of this work is the application of Artificial Immune Systems (AIS) for clustering buildings with similar physical characteristics and similar thermal efficiency. In the second phase, Artificial Neural Networks (ANN) are used to estimate the buildings heating and cooling loads. A final sensitivity test is performed to identify which building features have the most impact on the heating and cooling loads. The results obtained in the first phase revealed very distinct cluster prototypes, which demonstrates the AIS discriminating ability. The good estimation performance obtained in the second phase showed that this approach can be integrated in energy efficiency audits. Finally, the sensitivity analysis provided indications for actions (or legislation directives) in order to promote the design of more efficient buildings. © 2019 IEEE.

2019

Wavelet-based analysis and detection of traveling waves due to DC faults in LCC HVDC systems

Authors
da Silva, DM; Costa, FB; Miranda, V; Leite, H;

Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
This paper presents qualitative and quantitative analysis of the traveling waves induced by faults on direct current (DC) transmission lines of line-commutated converter high-voltage direct current (LCC HVDC) systems for detecting the wavefront arrival times using the boundary wavelet coefficients from real-time stationary wavelet transform (RT-SWT). The qualitative analysis takes into account the steady-state operation and the detection of the inception times of both first and second wavefronts at the converter stations. The behavior of the boundary wavelet coefficients in DC transmission lines is examined considering the effects of the main parameters that influence the detection of the traveling waves, such as mother wavelets, sampling frequency, DC transmission line terminations, electrical noises, as well as fault resistance and distance. An algorithm designed to run in real-time and able to minimize the factors that hamper the performance of traveling wave-based protection (TWP) methods is proposed to detect the first and second surge arrival times. Quantitative results are achieved based on the accuracy of one- and two-terminal fault location estimation methods, and indicate the proper operation of the presented algorithm.

  • 110
  • 337