2024
Authors
Añel J.A.; Pérez-Souto C.; Bayo-Besteiro S.; Prieto-Godino L.; Bloomfield H.; Troccoli A.; Torre L.D.L.;
Publication
Weather, Climate, and Society
Abstract
In 2021, the energy sector was put at risk by extreme weather in many different ways: North America and Spain suffered heavy winter storms that led to the collapse of the electricity network; California specifically experienced heavy droughts and heat-wave conditions, causing the operations of hydropower stations to halt; floods caused substantial damage to energy infrastructure in central Europe, Australia, and China throughout the year, and unusual wind drought conditions decreased wind power production in the United Kingdom by almost 40% during summer. The total economic impacts of these extreme weather events are estimated at billions of U.S. dollars. Here we review and assess in some detail the main extreme weather events that impacted the energy sector in 2021 worldwide, discussing some of the most relevant case studies and the meteorological conditions that led to them. We provide a perspective on their impacts on electricity generation, transmission, and consumption, and summarize estimations of economic losses.
2024
Authors
Ndawula, MB; Djokic, SZ; Kisuule, M; Gu, CH; Hernando-Gil, I;
Publication
SUSTAINABLE ENERGY GRIDS & NETWORKS
Abstract
Reliability analysis of large power networks requires accurate aggregate models of low voltage (LV) networks to allow for reasonable calculation complexity and to prevent long computational times. However, commonly used lumped load models neglect the differences in spatial distribution of demand, type of phase-connection of served customers and implemented protection system components (e.g., single-pole vs three-pole). This paper proposes a novel use of state enumeration (SE) and Monte Carlo simulation (MCS) techniques to formulate more accurate LV network reliability equivalents. The combined SE and MCS method is illustrated using a generic suburban LV test network, which is realistically represented by a reduced number of system states. This approach allows for a much faster and more accurate reliability assessments, where further reduction of system states results in a single-component equivalent reliability model with the same unavailability as the original LV network. Both mean values and probability distributions of standard reliability indices are calculated, where errors associated with the use of single-line models, as opposed to more detailed three-phase models, are quantified.
2024
Authors
Cheng S.; Gil I.H.; Flower I.; Gu C.; Li F.;
Publication
IEEE Transactions on Power Systems
Abstract
Proactive participation of uncertain renewable generation in the day-ahead (DA) wholesale market effectively reduces the system marginal price and carbon emissions, whilst significantly increasing the volumes of real-time balancing mechanism prices to ensure system security and stability. To solve the conflicting interests over the two timescales, this article: 1) proposes a novel hierarchical optimization model to align with the actual operation paradigms of the hierarchical market, whereby the capacity allocation matrix is adopted to coordinate the DA and balancing markets; 2) mathematically formulates and quantitatively analyses the long-term driving factors of balancing actions, enabling system operators (SOs) to design efficient and well-functioning market structures to meet economic and environmental targets; 3) empowers renewable generating units and flexible loads to participate in the balancing market (BM) as 'active' actors and enforces the non-discriminatory provision of balancing services. The performance of the proposed model is validated on a modified IEEE 39-bus power system and a reduced GB network. Results reveal that with effective resource allocation in different timescales of the hierarchical market, the drop speed of balancing costs soars while the intermittent generation climbs. The proposed methodology enables SOs to make the most of all resources available in the market and balance the system flexibly and economically. It thus safeguards the climate mitigation pathways against the risks of substantially higher balancing costs.
2024
Authors
Zhao, AP; Li, S; Gu, C; Yan, X; Hu, PJ; Wang, Z; Xie, D; Cao, Z; Chen, X; Wu, C; Luo, T; Wang, Z; Hernando-Gil, I;
Publication
IEEE Journal of Emerging and Selected Topics in Industrial Electronics
Abstract
2024
Authors
Sarwar, FA; Hernando-Gil, I; Vechiu, I;
Publication
Energy Conversion and Economics
Abstract
2023
Authors
Fidalgo, JN; Macedo, PM; Rocha, HFR;
Publication
2023 19TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM
Abstract
A common problem in distribution planning is the scarcity of historic data (training examples) relative to the number of variables, meaning that most data-driven techniques cannot be applied in such situations, due to the risk of overfitting. Thus, the suitable regression techniques are restrained to efficient models, preferably with embedded regularization features. This article compares three of these techniques: LASSO, Bayesian and CMLR (Conditioned multi-linear regression - a new approach developed within the scope of a project with a distribution company). The results showed that each technique has its own advantages and limitations. The Bayesian regression has the main advantage of providing inherent confidence intervals. The LASSO is a very economic and efficient regression tool. The CMLR is versatile and provided the best performance.A common problem in distribution planning is the scarcity of historic data (training examples) relative to the number of variables, meaning that most data-driven techniques cannot be applied in such situations, due to the risk of overfitting. Thus, the suitable regression techniques are restrained to efficient models, preferably with embedded regularization features. This article compares three of these techniques: LASSO, Bayesian and CMLR (Conditioned multi-linear regression - a new approach developed within the scope of a project with a distribution company). The results showed that each technique has its own advantages and limitations. The Bayesian regression has the main advantage of providing inherent confidence intervals. The LASSO is a very economic and efficient regression tool. The CMLR is versatile and provided the best performance.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.