2019
Authors
Soares, C; Vilas Boas, MDC; Lopes, EM; Choupina, H; Soares Dos Reis, R; Fitas, D; Cunha, JPS; Monteiro, P; Linhares, P; Rosas, MJSL;
Publication
EUROPEAN JOURNAL OF NEUROLOGY
Abstract
Objective: Axial motor features are common in Parkinson's disease (PD). These include gait impairment and postural abnormalities, such as camptocormia. The response of these symptoms to deep brain stimulation (DBS) is variable and difficult to assess objectively. For the first time, this study analyzes the treatment outcomes of two PD patients with camptocormia that underwent bilateral subthalamic nucleus (STN)-DBS evaluated with disruptive technologies. Patients and methods: Two patients with PD and camptocormia who underwent STN-DBS were included. Gait parameters were quantitatively assessed before and after surgery by using the NeuroKinect system and the camptocormia angle was measured using the camptoapp. Results: After surgery, patient 1 improved 29 points in the UPDRS-III. His camptocormia angle was 68° before and 38° after surgery. Arm and knee angular amplitudes (117.32 ± 7.47 vs 134.77 ± 2.70°; 144.51 ± 7.47 vs 169.08 ± 3.27°) and arm swing (3.59 ± 2.66 vs 5.40 ± 1.76 cm) improved when compared with his preoperative measurements. Patient 2 improved 22 points in the UPDRS-III after surgery. Her camptocormia mostly resolved (47° before to 9° after surgery). Gait analysis revealed improvement of stride length (0.29 ± 0.03 vs 0.35 ± 0.03 m), stride width (18.25 ± 1.16 vs 17.9 ± 0.84 cm), step velocity (0.91 ± 0.57 vs 1.33 ± 0.48 m/s), arm swing (4.51 ± 1.01 vs 7.38 ± 2.71 cm) and arm and hip angular amplitudes (131.57 ± 2.45° vs 137.75 ± 3.18; 100.51 ± 1.56 vs 102.18 ± 1.77°) compared with her preoperative results. Conclusion: The gait parameters and camptocormia of both patients objectively improved after surgery, as assessed by the two quantitative measurement systems. STN-DBS might have a beneficial effect on controlling axial posturing and gait, being a potential surgical treatment for camptocormia in patients with PD. However, further studies are needed to derive adequate selection criteria for this patient population. © 2019 Elsevier B.V.
2019
Authors
Lopes, EM; Sevilla, A; Vilas Boas, MD; Choupina, HMP; Nunes, DP; Rosas, MJ; Oliveira, A; Massano, J; Vaz, R; Cunha, JPS;
Publication
2019 9TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER)
Abstract
DBS surgery is considered for Parkinson's Disease patients when motor complications and consequent quality of life is no longer acceptable on optimal medical therapy prescribed by neurologists. Within the operating room, the electrode placement with the best clinical outcome for the patient is quantitatively assessed via the wrist rigidity assessment. A subjective scale is used, influenced by the neurologists' perception and experience. Our research group has previously designed a novel, comfortable and wireless system aiming to tackle this subjectivity. This system comprised a gyroscope sensor in a textile band, placed in the patients' hand, which communicated its measurement to a Smartphone via Bluetooth. During the wrist rigidity evaluation exam, a signal descriptor was computed from angular velocity (omega) and a polynomial mathematical model was used to classify the signals using a quantitative scale of rigidity improvement. In this present work, we aim to develop models that consider the 3-gyroscope-axes to acquire the omega and the cogwheel rigidity. Our results showed that y-gyroscope-axis remains the best way to classify the rigidity reduction, showing an accuracy of 78% and a mean error of 3.5%. According to previous results, the performance was similar and the decrease of samples to extract the omega features did not compromise system performance. The cogwheel rigidity did not improve the previous model and other gyroscope-axis beyond the y-axis decreased system performance.
2019
Authors
Novais, S; Silva, SO; Frazao, O;
Publication
SEVENTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS (EWOFS 2019)
Abstract
A reflective fiber optic sensor based on a Fabry-Perot cavity made by splicing two sections of multimode fiber is demonstrated to measure the needle curvature. The sensing structure was incorporated into a medical needle and characterized for curvature and temperature measurements. The maximum sensitivity of -0.152dB/m(-1) was obtained to the curvature measurements, with a resolution of 0.089m(-1). When subjected to temperature, the sensing head presented a low temperature sensitivity, which resulted in a small cross-sensitivity.
2019
Authors
Reis, A; Liberato, M; Paredes, H; Martins, P; Barroso, J;
Publication
Universal Access in Human-Computer Interaction. Multimodality and Assistive Environments - 13th International Conference, UAHCI 2019, Held as Part of the 21st HCI International Conference, HCII 2019, Orlando, FL, USA, July 26-31, 2019, Proceedings, Part II
Abstract
Information can be conveyed to the user by means of a narrative, modeled according to the user’s context. A case in point is the weather, which can be perceived differently and with distinct levels of importance according to the user’s context. For example, for a blind person, the weather is an important element to plan and move between locations. In fact, weather can make it very difficult or even impossible for a blind person to successfully negotiate a path and navigate from one place to another. To provide proper information, narrated and delivered according to the person’s context, this paper proposes a project for the creation of weather narratives, targeted at specific types of users and contexts. The proposal’s main objective is to add value to the data, acquired through the observation of weather systems, by interpreting that data, in order to identify relevant information and automatically create narratives, in a conversational way or with machine metadata language. These narratives should communicate specific aspects of the evolution of the weather systems in an efficient way, providing knowledge and insight in specific contexts and for specific purposes. Currently, there are several language generator’ systems, which automatically create weather forecast reports, based on previously processed and synthesized information. This paper, proposes a wider and more comprehensive approach to the weather systems phenomena, proposing a full process, from the raw data to a contextualized narration, thus providing a methodology and a tool that might be used for various contexts and weather systems. © 2019, Springer Nature Switzerland AG.
2018
Authors
Hartl, E; Knoche, T; Choupina, HMP; Remi, J; Vollmar, C; Cunha, JPS; Noachtar, S;
Publication
SEIZURE-EUROPEAN JOURNAL OF EPILEPSY
Abstract
Purpose: To investigate the frequency, localizing significance, and intensity characteristics of ictal vocalization in different focal epilepsy syndromes. Methods: Up to four consecutive focal seizures were evaluated in 277 patients with lesional focal epilepsy, excluding isolated auras and subclinical EEG seizure patterns. Vocalization was considered to be present if observed in at least one of the analyzed seizures and not being of speech quality. Intensity features of ictal vocalization were analyzed in a subsample of 17 patients with temporal and 19 with extratemporal epilepsy syndrome. Results: Ictal vocalization was observed in 37% of the patients (102/277) with similar frequency amongst different focal epilepsy syndromes. Localizing significance was found for its co-occurrence with ictal automatisms, which identified patients with temporal seizure onset with a sensitivity of 92% and specificity of 70%. Quantitative analysis of vocalization intensity allowed to distinguish seizures of frontal from temporal lobe origin based on the intensity range (p = 0.0003), intensity variation (p < 0.0001), as well as the intensity increase rate at the beginning of the vocalization (p = 0.003), which were significantly higher in frontal lobe seizures. No significant difference was found for mean intensity and mean vocalization duration. Conclusions: Although ictal vocalization is similarly common in different focal epilepsies, it shows localizing significance when taken into account the co-occurring seizure semiology. It especially increases the localizing value of automatisms, predicting a temporal seizure onset with a sensitivity of 92% and specificity of 70%. Quantitative parameters of the intensity dynamic objectively distinguished frontal lobe seizures, establishing an observer independent tool for semiological seizure evaluation.
2018
Authors
Rocha, M; Ferreira, PG;
Publication
Bioinformatics Algorithms: Design and Implementation in Python
Abstract
Bioinformatics Algorithms: Design and Implementation in Python provides a comprehensive book on many of the most important bioinformatics problems, putting forward the best algorithms and showing how to implement them. The book focuses on the use of the Python programming language and its algorithms, which is quickly becoming the most popular language in the bioinformatics field. Readers will find the tools they need to improve their knowledge and skills with regard to algorithm development and implementation, and will also uncover prototypes of bioinformatics applications that demonstrate the main principles underlying real world applications.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.