2018
Authors
Ferreira, CA; Melo, T; Sousa, P; Meyer, MI; Shakibapour, E; Costa, P; Campilho, A;
Publication
Image Analysis and Recognition - 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June 27-29, 2018, Proceedings
Abstract
Breast cancer is one of the leading causes of female death worldwide. The histological analysis of breast tissue allows for the differentiation of the tissue suspected to be abnormal into four classes: normal tissue, benign tumor, in situ carcinoma and invasive carcinoma. Automatic diagnostic systems can help in that task. In this sense, this work propose a deep neural network approach using transfer learning to classify breast cancer histology images. First, the added top layers are trained and a second fine-tunning is done on some feature extraction layers that are frozen previously. The used network is an Inception Resnet V2. In order to overcome the lack of data, data augmentation is performed too. This work is a suggested solution for the ICIAR 2018 BACH-Challenge and the accuracy is 0.76 in the blind test set. © 2018, Springer International Publishing AG, part of Springer Nature.
2018
Authors
Perez Rodriguez, G; Dias, S; Perez Perez, M; Fdez Riverola, F; Azevedo, NF; Lourenco, A;
Publication
BIOFOULING
Abstract
Experimental incapacity to track microbe-microbe interactions in structures like biofilms, and the complexity inherent to the mathematical modelling of those interactions, raises the need for feasible, alternative modelling approaches. This work proposes an agent-based representation of the diffusion of N-acyl homoserine lactones (AHL) in a multicellular environment formed by Pseudomonas aeruginosa and Candida albicans. Depending on the spatial location, C. albicans cells were variably exposed to AHLs, an observation that might help explain why phenotypic switching of individual cells in biofilms occurred at different time points. The simulation and algebraic results were similar for simpler scenarios, although some statistical differences could be observed (p<0.05). The model was also successfully applied to a more complex scenario representing a small multicellular environment containing C. albicans and P. aeruginosa cells encased in a 3-D matrix. Further development of this model may help create a predictive tool to depict biofilm heterogeneity at the single-cell level.
2018
Authors
Mavioso, C; Correia Anacleto, JC; Vasconcelos, MA; Araujo, R; Oliveira, H; Pinto, D; Gouveia, P; Alves, C; Cardoso, F; Cardoso, J; Cardoso, MJ;
Publication
EUROPEAN JOURNAL OF CANCER
Abstract
2018
Authors
Pinheiro, G; Coelho, P; Salgado, M; Oliveira, HP; Cunha, A;
Publication
PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM)
Abstract
Endoscopic capsules are vitamin-sized devices that create 8 to 10 hour videos of the digestive tract. They are the leading diagnosing method for the small bowel, a region not easily accessible with traditional endoscopy techniques. However, these capsules do not provide localization information, even though it is crucial for the diagnosis, follow-ups and surgical interventions. Currently, the capsule localization is either estimated based on scarce gastrointestinal tract landmarks or given by additional hardware that causes discomfort to the patient and represents a cost increase. Current software methods show great potential, but still need to improve in order to overcome their limitations. In this work, a visual odometry method for capsule localization inside the small bowel is proposed.
2018
Authors
Cardoso, MJ; Vrieling, C; Cardoso, JS; Oliveira, HP; Williams, NR; Dixon, JM; Gouveia, P; Keshtgar, M; Mosahebi, A; Bishop, D; Lacher, R; Liefers, GJ; Molenkamp, B; Van de Velde, C; Azevedo, I; Canny, R; Christie, D; Evans, A; Fitzal, F; Graham, P; Hamdi, M; Joahensen, J; Laws, S; Merck, B; Reece, G; Sacchini, V; Vrancken, MJ; Wilkinson, L; Matthes, GZ;
Publication
BREAST
Abstract
Purpose: BCCT.core (Breast Cancer Conservative Treatment. cosmetic results) is a software created for the objective evaluation of aesthetic result of breast cancer conservative treatment using a single patient frontal photography. The lack of volume information has been one criticism, as the use of 3D information might improve accuracy in aesthetic evaluation. In this study, we have evaluated the added value of 3D information to two methods of aesthetic evaluation: a panel of experts; and an augmented version of the computational model - BCCT.core3d. Material and methods: Within the scope of EU Seventh Framework Programme Project PICTURE, 2D and 3D images from 106 patients from three clinical centres were evaluated by a panel of 17 experts and the BCCT.core. Agreement between all methods was calculated using the kappa (K) and weighted kappa (wK) statistics. Results: Subjective agreement between 2D and 3D individual evaluation was fair to moderate. The agreement between the expert classification and the BCCT.core software with both 2D and 3D features was also fair to moderate. Conclusions: The inclusion of 3D images did not add significant information to the aesthetic evaluation either by the panel or the software. Evaluation of aesthetic outcome can be performed using of the BCCT.core software, with a single frontal image.
2018
Authors
Paiva, JS; Ribeiro, RSR; Cunha, JPS; Rosa, CC; Jorge, PAS;
Publication
SENSORS
Abstract
Recent trends on microbiology point out the urge to develop optical micro-tools with multifunctionalities such as simultaneous manipulation and sensing. Considering that miniaturization has been recognized as one of the most important paradigms of emerging sensing biotechnologies, optical fiber tools, including Optical Fiber Tweezers (OFTs), are suitable candidates for developing multifunctional small sensors for Medicine and Biology. OFTs are flexible and versatile optotools based on fibers with one extremity patterned to form a micro-lens. These are able to focus laser beams and exert forces onto microparticles strong enough (piconewtons) to trap and manipulate them. In this paper, through an exploratory analysis of a 45 features set, including time and frequency-domain parameters of the back-scattered signal of particles trapped by a polymeric lens, we created a novel single feature able to differentiate synthetic particles (PMMA and Polystyrene) from living yeasts cells. This single statistical feature can be useful for the development of label-free hybrid optical fiber sensors with applications in infectious diseases detection or cells sorting. It can also contribute, by revealing the most significant information that can be extracted from the scattered signal, to the development of a simpler method for particles characterization (in terms of composition, heterogeneity degree) than existent technologies.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.