Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by BIO

2017

Heart rate variability metrics for fine-grained stress level assessment

Authors
Pereira, T; Almeida, PR; Cunha, JPS; Aguiar, A;

Publication
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE

Abstract
Background and Objectives: In spite of the existence of a multitude of techniques that allow the estimation of stress from physiological indexes, its fine-grained assessment is still a challenge for biomedical engineering. The short-term assessment of stress condition overcomes the limits to stress characterization with long blocks of time and allows to evaluate the behaviour change in real-world settings and also the stress level dynamics. The aim of the present study was to evaluate time and frequency domain and nonlinear heart rate variability (HRV) metrics for stress level assessment using a short-time window. Methods: The electrocardiogram (ECG) signal from 14 volunteers was monitored using the Vital Jacketml while they performed the Trier Social Stress Test (TSST) which is a standardized stress-inducing protocol. Window lengths from 220 s to 50 s for HRV analysis were tested in order to evaluate which metrics could be used to monitor stress levels in an almost continuous way. Results: A sub-set of HRV metrics (AVNN, rMSSD, SDNN and pNN20) showed consistent differences between stress and non-stress phases, and showed to be reliable parameters for the assessment of stress levels in short-term analysis. Conclusions: The AVNN metric, using 50 s of window length analysis, showed that it is the most reliable metric to recognize stress level across the four phases of TSST and allows a fine-grained analysis of stress effect as an index of psychological stress and provides an insight into the reaction of the autonomic nervous system to stress.

2017

Left Ventricular Myocardial Segmentation in 3-D Ultrasound Recordings: Effect of Different Endocardial and Epicardial Coupling Strategies

Authors
Pedrosa, J; Barbosa, D; Heyde, B; Schnell, F; Rosner, A; Claus, P; D'hooge, J;

Publication
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL

Abstract
Cardiac volume/function assessment remains a critical step in daily cardiology, and 3-D ultrasound plays an increasingly important role. Though development of automatic endocardial segmentation methods has received much attention, the same cannot be said about epicardial segmentation, in spite of the importance of full myocardial segmentation. In this paper, different ways of coupling the endocardial and epicardial segmentations are contrasted and compared with uncoupled segmentation. For this purpose, the B-spline explicit active surfaces framework was used; 27 3-D echocardiographic images were used to validate the different coupling strategies, which were compared with manual contouring of the endocardial and epicardial borders performed by an expert. It is shown that an independent segmentation of the endocardium followed by an epicardial segmentation coupled to the endocardium is the most advantageous. In this way, a framework for fully automatic 3-D myocardial segmentation is proposed using a novel coupling strategy.

2017

Minho Affective Sentences (MAS): Probing the roles of sex, mood, and empathy in affective ratings of verbal stimuli

Authors
Pinheiro, AP; Dias, M; Pedrosa, J; Soares, AP;

Publication
BEHAVIOR RESEARCH METHODS

Abstract
During social communication, words and sentences play a critical role in the expression of emotional meaning. The Minho Affective Sentences (MAS) were developed to respond to the lack of a standardized sentence battery with normative affective ratings: 192 neutral, positive, and negative declarative sentences were strictly controlled for psycholinguistic variables such as numbers of words and letters and per-million word frequency. The sentences were designed to represent examples of each of the five basic emotions (anger, sadness, disgust, fear, and happiness) and of neutral situations. These sentences were presented to 536 participants who rated the stimuli using both dimensional and categorical measures of emotions. Sex differences were also explored. Additionally, we probed how personality, empathy, and mood from a subset of 40 participants modulated the affective ratings. Our results confirmed that the MAS affective norms are valid measures to guide the selection of stimuli for experimental studies of emotion. The combination of dimensional and categorical ratings provided a more fine-grained characterization of the affective properties of the sentences. Moreover, the affective ratings of positive and negative sentences were not only modulated by participants' sex, but also by individual differences in empathy and mood state. Together, our results indicate that, in their quest to reveal the neurofunctional underpinnings of verbal emotional processing, researchers should consider not only the role of sex, but also of interindividual differences in empathy and mood states, in responses to the emotional meaning of sentences.

2017

LPV system identification using the matchable observable linear identification approach

Authors
dos Santos, PL; Romano, R; Azevedo Perdicoulis, TP; Rivera, DE; Ramos, JA;

Publication
2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC)

Abstract
This article presents an optimal estimator for discrete-time systems disturbed by output white noise, where the proposed algorithm identifies the parameters of a Multiple Input Single Output LPV State Space model. This is an LPV version of a class of algorithms proposed elsewhere for identifying LTI systems. These algorithms use the matchable observable linear identification parameterization that leads to an LTI predictor in a linear regression form, where the ouput prediction is a linear function of the unknown parameters. With a proper choice of the predictor parameters, the optimal prediction error estimator can be approximated. In a previous work, an LPV version of this method, that also used an LTI predictor, was proposed; this LTI predictor was in a linear regression form enablin, in this way, the model estimation to be handled by a Least-Squares Support Vector Machine approach, where the kernel functions had to be filtered by an LTI 2D-system with the predictor dynamics. As a result, it can never approximate an optimal LPV predictor which is essential for an optimal prediction error LPV estimator. In this work, both the unknown parameters and the state-matrix of the output predictor are described as a linear combination of a finite number of basis functions of the scheduling signal; the LPV predictor is derived and it is shown to be also in the regression form, allowing the unknown parameters to be estimated by a simple linear least squares method. Due to the LPV nature of the predictor, a proper choice of its parameters can lead to the formulation of an optimal prediction error LPV estimator. Simulated examples are used to assess the effectiveness of the algorithm. In future work, optimal prediction error estimators will be derived for more general disturbances and the LPV predictor will be used in the Least-Squares Support Vector Machine approach.

2017

Raman imaging studies on the adsorption of methylene blue species onto silver modified linen fibers

Authors
Fateixa, S; Wilhelm, M; Jorge, AM; Nogueira, HIS; Trindade, T;

Publication
JOURNAL OF RAMAN SPECTROSCOPY

Abstract
We demonstrate in this research that surface-enhanced resonance Raman scattering combined with Raman imaging can be effectively used for analysis of distinct forms of organic dyes in antimicrobial Ag-loaded textile fibers. The potential of this approach, as a non-destructive characterization method of fabrics, was evaluated with Raman studies performed on the molecular forms of methylene blue (MB), used here as the organic dye model. On the basis of the surface-enhanced Raman scattering spectra of MB monomers and dimers, the Raman imaging of Ag-loaded linen fibers previously treated with MB solution was performed and then used for identification of the adsorbate species in distinct regions of the substrates. A semi-quantitative analysis is then performed by considering the area of the Raman bands ascribed to the MB molecular forms and image analysis applied to Raman images. Copyright (c) 2017 John Wiley & Sons, Ltd.

2017

2D computational modeling of optical trapping effects on malaria-infected red blood cells

Authors
Paiva, JS; Ribeiro, RSR; Jorge, PAS; Rosa, CC; Guerreiro, A; Cunha, JPS;

Publication
Optics InfoBase Conference Papers

Abstract
A computational method for optical fiber trapping of healthy and Malariainfected blood cells characterization is proposed. A trapping force relation with the infection stage was found, which could trigger the development of a diagnostic sensor. © OSA 2017.

  • 68
  • 113