Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CPES

2024

Data Augmented Rule-based Expert System to Control a Hybrid Storage System

Authors
Bessa, RJ; Lobo, F; Fernandes, F; Silva, B;

Publication
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024

Abstract
Hybrid storage systems that combine high energy density and high power density technologies can enhance the flexibility and stability of microgrids and local energy communities under high renewable energy shares. This work introduces a novel approach integrating rule-based (RB) methods with evolutionary strategies (ES)-based reinforcement learning. Unlike conventional RB methods, this approach involves encoding rules in a domain-specific language and leveraging ES to evolve the symbolic model via data-driven interactions between the control agent and the environment. The results of a case study with Liion and redox flow batteries show that the method effectively extracted rules that minimize the energy exchanged between the community and the grid.

2024

Exploiting the determinant factors on the available flexibility area of ADN's at TSO-DSO interface

Authors
Rabiee, A; Bessa, RJ; Sumaili, J; Keane, A; Soroudi, A;

Publication
IET RENEWABLE POWER GENERATION

Abstract
Active distribution networks (ADNs) are consistently being developed as a result of increasing penetration of distributed energy resources (DERs) and energy transition from fossil-fuel-based to zero carbon era. This penetration poses technical challenges for the operation of both transmission and distribution networks. The determination of the active/reactive power capability of ADNs will provide useful information at the transmission and distribution systems interface. For instance, the transmission system operator (TSO) can benefit from reactive power and reserve services which are readily available by the DERs embedded within the downstream ADNs, which are managed by the distribution system operator (DSO). This article investigates the important factors affecting the active/reactive power flexibility area of ADNs such as the joint active and reactive power dispatch of DERs, dependency of the ADN's load to voltage, parallel distribution networks, and upstream network parameters. A two-step optimization model is developed which can capture the P/Q flexibility area, by considering the above factors and grid technical constraints such as its detailed power flow model. The numerical results from the IEEE 69-bus standard distribution feeder underscore the critical importance of considering various factors to characterize the ADN's P/Q flexibility area. Ignoring these factors can significantly impact the shape and size of Active Distribution Networks (ADN) P/Q flexibility maps. Specifically, the Constant Power load model exhibits the smallest flexibility area; connecting to a weak upstream network diminishes P/Q flexibility, and reactive power redispatch improves active power flexibility margins. Furthermore, the collaborative support of reactive power from a neighboring distribution feeder, connected in parallel with the studied ADN, expands the achievable P/Q flexibility. These observations highlight the significance of accurately characterizing transmission and distribution network parameters. Such precision is fundamental for ensuring a smooth energy transition and successful integration of hybrid renewable energy technologies into ADNs. The article investigates factors influencing the flexibility of active distribution networks (ADNs), including joint active and reactive power re-dispatch of DERs, ADN's load model, parallel distribution networks, and upstream network parameters. Numerical results highlight the significance of these factors, emphasizing the need for accurate characterization of transmission and distribution network parameters to facilitate a smooth energy transition and the integration of hybrid renewable energy technologies into ADNs. image

2024

Handling DER Market Participation: Market Redesign vs Network Augmentation

Authors
Fonseca, NS; Soares, F; Iria, J;

Publication
2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024

Abstract
This paper proposes a planning optimization model to help distribution system operators (DSOs) decide on the most cost-effective investments to handle the wholesale market participation of distributed energy resources (DERs). Two investment options are contemplated: market redesign; and network augmentation. The market redesign is employed through a DSO framework used to coordinate the network-secure participation of DERs in wholesale markets. Network augmentation is achieved by investing in new HV/MV OLTC and MV/LV transformers. To evaluate the performance of our planning model, we used the IEEE 69-bus network with three DER aggregators operating under different DER scenarios. Our tests show that the planning problem suggests investment decisions that can help DSOs guarantee network security. Market redesign has shown to be the most cost-effective option. However, this option is not always viable, namely in scenarios where not enough DERs are available to provide network support services. In such scenarios, hybrid investment solutions are required.

2024

Economic viability analysis of a Renewable Energy System for Green Hydrogen and Ammonia Production

Authors
Félix, P; Oliveira, F; Soares, FJ;

Publication
2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024

Abstract
This paper presents a methodology for assessing the long-term economic feasibility of renewable energy-based systems for green hydrogen and ammonia production. A key innovation of this approach is the incorporation of a predictive algorithm that optimizes day-ahead system operation on an hourly basis, aiming to maximize profit. By integrating this feature, the methodology accounts for forecasting errors, leading to a more realistic economic evaluation. The selected case study integrates wind and PV as renewable energy sources, supplying an electrolyser and a Haber-Bosch ammonia production plant. Additionally, all supporting equipment, including an air separation unit for nitrogen production, compressors, and hydrogen / nitrogen / ammonia storage devices, is also considered. Furthermore, an electrochemical battery is included, allowing for an increased electrolyser load factor and smoother operating regimes. The results demonstrate the effectiveness of the proposed methodology, providing valuable insights and performance indicators for this type of energy systems, enabling informed decision-making by investors and stakeholders.

2024

Holistic regulatory framework for distributed generation based on multi-objective optimization

Authors
da Costa, VBF; Bitencourt, L; Peters, P; Dias, BH; Soares, T; Silva, BMA; Bonatto, BD;

Publication
JOURNAL OF CLEANER PRODUCTION

Abstract
Regulatory changes associated with distributed generation have occurred in several countries (e.g., the USA, Germany, the UK, and Australia). However, there is a lack of robust and holistic analytical models that can be used to implement the best regulatory framework among possible options. In this context, the present paper proposes a cutting-edge regulatory framework for distributed generation based on multi-objective optimization, taking into account socioeconomic (socioeconomic welfare created by the regulated electricity market and electricity tariff affordability) and environmental (global warming potential) indicators. Such indicators are modeled primarily based on the optimized tariff model (socioeconomic regulated electricity market model), Bass diffusion model (forecasting model of distributed generation deployment), and life cycle assessment (environmental impact assessment method). The design variables are assumed to be the regulated electricity tariff and remuneration of the electricity injected into the grid over the years. First, the proposed methodology is applied to fifteen large-scale Brazilian concession areas with a significant deployment of distributed generation assuming two approaches, a multi-compensation scenario, where the compensation is set individually for each concession area, and a single-compensation scenario, where the compensation is set equally for all concession areas. Then, the optimal solutions are compared to Ordinary Law 14300, which is a recently implemented regulatory framework for distributed generation in Brazil. Results demonstrate that Ordinary Law 14300 is a dominated or non-optimal solution since it is not located on the optimal Pareto frontiers for any of the assessed concession areas. Assuming the Euclidian knee points, benefits averaging 33% and 15% were achieved in terms of electricity tariff affordability for the multi and single-compensation scenarios, respectively, with small losses of 8% and 3% in terms of socioeconomic welfare and global warming potential. Though the proposed methodology is applied in the Brazilian context, it can also be applied to other countries with regulated electricity markets; thus, it is expected to be valuable for researchers, government institutions, and regulatory agencies worldwide.

2024

A dynamic reference voltage adjustment strategy for Open-UPQC to increase hosting capacity of electrical distribution networks

Authors
Kazemi-Robati, E; Hafezi, H; Faranda, R; Silva, B; Nasiri, MS;

Publication
SUSTAINABLE ENERGY GRIDS & NETWORKS

Abstract
Future electrical grids, particularly the distribution networks, may face more severe voltage rises/drops, and in general, more power quality problems in the presence of new loads such as electric vehicle chargers and renewable energy generation units like photovoltaic systems. This necessitates investing in additional high-cost infrastructure to increase the capability of the feeder in hosting higher levels of loads and generation units while the existing capacity is not utilized effectively. In the stated condition, effective voltage stabilization strategies in electrical distribution networks can contribute to hosting capacity improvement and the better utilization of the existing infrastructure. Accordingly, in this paper, the application of Open-UPQC in voltage profile improvement and hosting capacity enhancement is evaluated in low-voltage distribution networks. Furthermore, a dynamic reference voltage adjustment strategy is applied to the device to improve its capabilities in power quality improvement and hosting capacity enhancement. Simulation studies have been implemented to evaluate the capability of Open-UPQC either with static reference voltage or the dynamically-adjusted one in low-voltage networks with real measured data while different cases are assessed regarding the topology and the length of the feeder. The simulation results approved the capability of Open-UPQC especially with the dynamic reference voltage in hosting capacity enhancement while providing the highest level of voltage profile improvement among all the assessed custom power devices in the studied low-voltage networks.

  • 7
  • 330