2016
Authors
Gonçalves, L; Novo, J; Campilho, A;
Publication
24th European Symposium on Artificial Neural Networks, ESANN 2016, Bruges, Belgium, April 27-29, 2016
Abstract
This work presents the results of the characterization of lung nodules in chest Computerized Tomography for benign/malignant classification. A set of image features was used in the Computer-aided Diagnosis system to distinguish benign from malignant nodules and, therefore, diagnose lung cancer. A filter-based feature selection approach was used in order to define an optimal subset with higher accuracy. A large and heterogeneous set of 293 features was defined, including shape, intensity and texture features. We used different KNN and SVM classifiers to evaluate the features subsets. The estimated results were tested in a dataset annotated by radiologists. Promising results were obtained with an area under the Receiver Operating Characteristic curve (AUC value) of 96:2 ± 0:5% using SVM.
2016
Authors
Pereira, T; Paiva, JS; Correia, C; Cardoso, J;
Publication
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
Abstract
The measurement and analysis of the arterial pulse waveform (APW) are the means for cardiovascular risk assessment. Optical sensors represent an attractive instrumental solution to APW assessment due to their truly non-contact nature that makes the measurement of the skin surface displacement possible, especially at the carotid artery site. In this work, an automatic method to extract and classify the acquired data of APW signals and noise segments was proposed. Two classifiers were implemented: k-nearest neighbours and support vector machine (SVM), and a comparative study was made, considering widely used performance metrics. This work represents a wide study in feature creation for APW. A pool of 37 features was extracted and split in different subsets: amplitude features, time domain statistics, wavelet features, cross-correlation features and frequency domain statistics. The support vector machine recursive feature elimination was implemented for feature selection in order to identify the most relevant feature. The best result (0.952 accuracy) in discrimination between signals and noise was obtained for the SVM classifier with an optimal feature subset .
2016
Authors
Achilles, F; Choupina, H; Loesch, A; S. Cunha, J; Remi, J; Vollmar, C; Tombari, F; Navab, N; Noachtar, S;
Publication
Clinical Neurophysiology
Abstract
2016
Authors
Pereira, T; Nogueira Silva, C; Simoes, R;
Publication
INFRARED PHYSICS & TECHNOLOGY
Abstract
Body skin temperature is a useful parameter for diagnosing diseases and infrared thermography can, be a powerful tool in providing important information to detect body temperature changes in a noninvasive way. The aim of this work was to study the pattern of skin temperature during pregnancy, to establish skin temperature reference values and to find correlations between these and the pregnant population characteristics. Sixty-one healthy pregnant women (mean age 30.6 +/- 5.1 years) in the 8th-40th gestational week with normal pregnancies were examined in 31 regions of interest (ROI). The ROIs were defined all over the body in order to determine the most influenced by factors such as age or body mass index (BMI). The results obtained in this work highlight that in normal pregnant women the skin temperature is symmetrically distributed, with the symmetrical areas differing less than 0.5 degrees C, with a mean value of 0.25 +/- 0.23 degrees C. This study identified a significant negative correlation between the BMI and temperature. Age has been shown to have great influence on the skin temperature, with a significant increase of temperature observed with age. This work explores a novel medical application of infrared thermography and provides a characterization of thermal skin profile in human pregnancy for a large set of ROIs while also evaluating the effects of age and BMI.
2016
Authors
Vaz, P; Pereira, T; Figueiras, E; Correia, C; Humeau Heurtier, A; Cardoso, J;
Publication
BIOMEDICAL SIGNAL PROCESSING AND CONTROL
Abstract
A multi-wavelengths analysis for pulse waveform extraction using laser speckle is conducted. The proposed system consists of three coherent light sources (532 nm, 635 nm, 850 nm). A bench-test composed of a moving skin-like phantom (silicone membrane) is used to compare the results obtained from different wavelengths. The system is able to identify a skin-like phantom vibration frequency, within physiological values, with a minimum error of 0.5 mHz for the 635 nm and 850 nm wavelengths and a minimum error of 1.3 mHz for the 532 nm light wavelength using a FFT-based algorithm. The phantom velocity profile is estimated with an error ranging from 27% to 9% using a bidimensional correlation coefficient-based algorithm. An in vivo trial is also conducted, using the 532 nm and 635 nm laser sources. The 850 nm light source has not been able to extract the pulse waveform. The heart rate is identified with a minimum error of 0.48 beats per minute for the 532 nm light source and a minimal error of 1.15 beats per minute for the 635 nm light source. Our work reveals that a laser speckle-based system with a 532 nm wavelength is able to give arterial pulse waveform with better results than those given with a 635 nm laser.
2016
Authors
Ramos, J; Kockelkorn, TTJP; Ramos, I; Ramos, R; Grutters, J; Viergever, MA; van Ginneken, B; Campilho, A;
Publication
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
Abstract
Content-based image retrieval (CBIR) is a search technology that could aid medical diagnosis by retrieving and presenting earlier reported cases that are related to the one being diagnosed. To retrieve relevant cases, CBIR systems depend on supervised learning to map low-level image contents to high-level diagnostic concepts. However, the annotation by medical doctors for training and evaluation purposes is a difficult and time-consuming task, which restricts the supervised learning phase to specific CBIR problems of well-defined clinical applications. This paper proposes a new technique that automatically learns the similarity between the several exams from textual distances extracted from radiology reports, thereby successfully reducing the number of annotations needed. Our method first infers the relation between patients by using information retrieval techniques to determine the textual distances between patient radiology reports. These distances are subsequently used to supervise a metric learning algorithm, that transforms the image space accordingly to textual distances. CBIR systems with different image descriptions and different levels of medical annotations were evaluated, with and without supervision from textual distances, using a database of computer tomography scans of patients with interstitial lung diseases. The proposed method consistently improves CBIR mean average precision, with improvements that can reach 38%, and more marked gains for small annotation sets. Given the overall availability of radiology reports in picture archiving and communication systems, the proposed approach can be broadly applied to CBIR systems in different medical problems, and may facilitate the introduction of CBIR in clinical practice.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.