2013
Authors
Ferreira, PG; Dermitzakis, ET;
Publication
eLife
Abstract
2013
Authors
Bava, FA; Eliscovich, C; Ferreira, PG; Minana, B; Ben Dov, C; Guigo, R; Valcarcel, J; Mendez, R;
Publication
NATURE
Abstract
More than half of mammalian genes generate multiple messenger RNA isoforms that differ in their 3' untranslated regions (3' UTRs) and therefore in regulatory sequences(1), often associated with cell proliferation and cancer(2,3); however, the mechanisms coordinating alternative 3'-UTR processing for specific mRNA populations remain poorly defined. Here we report that the cytoplasmic-polyadenylation element binding protein 1 (CPEB1), an RNA-binding protein that regulates mRNA translation(4), also controls alternative 3'-UTR processing. CPEB1 shuttles to the nudeus(5,6), where it co-localizes with splicing factors and mediates shortening of hundreds of mRNA 3' UTRs, thereby modulating their translation efficiency in the cytoplasm. CPEB1-mediated 3'-UTR shortening correlates with cell proliferation and tumorigenesis. CPEB1 binding to pre-mRNAs not only directs the use of alternative polyadenylation sites, but also changes alternative splicing by preventing U2AF65 recruitment. Our results reveal a novel function of CPEB1 in mediating alternative 3'-UTR processing, which is coordinated with regulation of mRNA translation, through its dual nuclear and cytoplasmic functions.
2013
Authors
Ferreira, L; Teixeira, A; Cunha, JPS;
Publication
Handbook of Research on ICTs for Human-Centered Healthcare and Social Care Services
Abstract
The electronic storage of medical patient data is becoming a daily experience in most of the practices and hospitals worldwide. However, much of the available data is in free text form, a convenient way of expressing concepts and events but especially challenging if one wants to perform automatic searches, summarization, or statistical analyses. Information Extraction can relieve some of these problems by offering a semantically informed interpretation and abstraction of the texts. MedInX, the Medical Information eXtraction system presented in this chapter is designed to process textual clinical discharge records in order to perform automatic and accurate mapping of free text reports onto a structured representation. MedInX components are based on Natural Language Processing principles and provide several mechanisms to read, process, and utilize external resources, such as terminologies and ontologies. MedInX current practical applications include automatic code assignment and an audit system capable of systematically analyze the content and completeness of the clinical reports. Recent evaluation efforts on a set of authentic patient discharge letters indicate that the system performs with 95% precision and recall. © 2013, IGI Global.
2013
Authors
Monteiro, JC; Sequeira, AF; Oliveira, HP; Cardoso, JS;
Publication
Computer Vision, Imaging and Computer Graphics - Theory and Applications - International Joint Conference, VISIGRAPP 2013, Barcelona, Spain, February 21-24, 2013, Revised Selected Papers
Abstract
The use of images acquired in unconstrained scenarios is giving rise to new challenges in the field of iris recognition. Many works in literature reported excellent results in both iris segmentation and recognition but mostly with images acquired in controlled conditions. The intention to broaden the field of application of iris recognition, such as airport security or personal identification in mobile devices, is therefore hindered by the inherent unconstrained nature under which images are to be acquired. The proposed work focuses on mutual context information from iris centre and iris limbic and pupillary contours to perform robust and accurate iris segmentation in noisy images. The developed algorithm was tested on the MobBIO database with a promising 96% segmentation accuracy for the limbic contour.
2013
Authors
Rynkevic, R; Silva, MF; Marques, MA;
Publication
2013 IEEE 3RD PORTUGUESE MEETING IN BIOENGINEERING (ENBENG)
Abstract
One line of research and development in robotics receiving increasing attention in recent years is the development of biologically inspired walking robots. The purpose is to gain knowledge of biological beings and apply that knowledge to implement the same methods of locomotion ( or at least use the biological inspiration) on the machines we build. It is believed that this way it is possible to develop machines with capabilities similar to those of biological beings in terms of locomotion skills and energy efficiency. One way to better understand the functioning of these systems, without the need to develop prototypes with long and costly development, is to use simulation models. Based on these ideas, this work concerns the biomechanical study of the spider crab, using the SimMechanics toolbox of Matlab/Simulink. This paper describes the anatomy and locomotion of the spider crab, its modeling and control and the locomotion simulation of a crab within the SimMechanics environment.
2013
Authors
Rocha, A; Martins, A; Freire Junior, JC; Boulos, MNK; Escriche Vicente, ME; Feld, R; van de Ven, P; Nelson, J; Bourke, A; OLaighin, G; Sdogati, C; Jobes, A; Narvaiza, L; Rodriguez Molinero, A;
Publication
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS
Abstract
Purpose: This paper describes proposed health care services innovations, provided by a system called CAALYX (Complete Ambient Assisted Living eXperiment). CAALYX aimed to provide healthcare innovation by extending the state-of-the-art in tele-healthcare, by focusing on increasing the confidence of elderly people living autonomously, by building on the knowledge base of the most common disorders and respective characteristic vital sign changes for this age group. Methods: A review of the state-of-the-art on health care services was carried out. Then, extensive research was conducted on the particular needs of the elderly in relation to home health services that, if offered to them, could improve their day life by giving them greater confidence and autonomy. To achieve this, we addressed issues associated with the gathering of clinical data and interpretation of these data, as well as possibilities of automatically triggering appropriate clinical measures. Considering this initial work we started the identification of initiatives, ongoing works and technologies that could be used for the development of the system. After that, the implementation of CAALYX was done. Findings: The innovation in CAALYX system considers three main areas of contribution: (i) The Roaming Monitoring System that is used to collect information on the well-being of the elderly users; (ii) The Home Monitoring System that is aimed at helping the elders independently living at home being implemented by a device (a personal computer or a set top box) that supports the connection of sensors and video cameras that may be used for monitoring and for interaction with the elder; (iii) The Central Care Service and Monitoring System that is implemented by a Caretaker System where attention and care services are provided to elders, where actors as Caretakers, Doctors and Relatives are logically linked to elders. Innovations in each of these areas are presented here. Conclusions: The ageing European society is placing an added burden on future generations, as the 'elderly-to-working-age-people' ratio is set to steadily increase in the future. Nowadays, quality of life and fitness allows for most older persons to have an active life well into their eighties. Furthermore, many older persons prefer to live in their own house and choose their own lifestyle. The CAALYX system can have a clear impact in increasing older persons' autonomy, by ensuring that they do not need to leave their preferred environment in order to be properly monitored and taken care of.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.