Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Manuel Barbosa

2024

C'est très CHIC: A compact password-authenticated key exchange from lattice-based KEM

Authors
Arriaga, A; Barbosa, M; Jarecki, S; Skrobot, M;

Publication
IACR Cryptol. ePrint Arch.

Abstract

2024

X-Wing: The Hybrid KEM You've Been Looking For

Authors
Barbosa, M; Connolly, D; Duarte, JD; Kaiser, A; Schwabe, P; Varner, K; Westerbaan, B;

Publication
IACR Cryptol. ePrint Arch.

Abstract

2024

Formally Verifying Kyber Episode V: Machine-Checked IND-CCA Security and Correctness of ML-KEM in EasyCrypt

Authors
Almeida, JB; Olmos, SA; Barbosa, M; Barthe, G; Dupressoir, F; Grégoire, B; Laporte, V; Lechenet, JC; Low, C; Oliveira, T; Pacheco, H; Quaresma, M; Schwabe, P; Strub, PY;

Publication
ADVANCES IN CRYPTOLOGY - CRYPTO 2024, PT II

Abstract
We present a formally verified proof of the correctness and IND-CCA security of ML-KEM, the Kyber-based Key Encapsulation Mechanism (KEM) undergoing standardization by NIST. The proof is machine-checked in EasyCrypt and it includes: 1) A formalization of the correctness (decryption failure probability) and IND-CPA security of the Kyber base public-key encryption scheme, following Bos et al. at Euro S&P 2018; 2) A formalization of the relevant variant of the Fujisaki-Okamoto transform in the Random Oracle Model (ROM), which follows closely (but not exactly) Hofheinz, Hovelmanns and Kiltz at TCC 2017; 3) A proof that the IND-CCA security of the ML-KEM specification and its correctness as a KEM follows from the previous results; 4) Two formally verified implementations of ML-KEM written in Jasmin that are provably constant-time, functionally equivalent to the ML-KEM specification and, for this reason, inherit the provable security guarantees established in the previous points. The top-level theorems give self-contained concrete bounds for the correctness and security of ML-KEM down to (a variant of) Module-LWE. We discuss how they are built modularly by leveraging various EasyCrypt features.

2024

A Tight Security Proof for $\mathrm{SPHINCS^{+}}$, Formally Verified

Authors
Barbosa, M; Dupressoir, F; Hülsing, A; Meijers, M; Strub, PY;

Publication
IACR Cryptol. ePrint Arch.

Abstract

2024

X-Wing

Authors
Barbosa, M; Connolly, D; Duarte, JD; Kaiser, A; Schwabe, P; Varner, K; Westerbaan, B;

Publication
IACR Commun. Cryptol.

Abstract

  • 19
  • 19