Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRAS

2023

Pyroelectrically Polarity Switched Electret for Flexible Invisible Digital Memory and Self-Powered Sensors

Authors
Gonzalez Losada, P; Martins, M; Vinayakumar, KB;

Publication
IEEE SENSORS JOURNAL

Abstract
Advancement and opportunity in the Internet of Things (IoT) and circular economy are pushing the technologies required to develop eco-friendly memory devices, computing devices, advanced sensors, and actuators. In this manuscript, a thermally cycled lithium niobate pyroelectric crystal is used to store the surface charges in different dielectric samples (Kapton, Parafilm, and Teflon). Charge storing parameters, such as the effect of temperature ramp, the gap between the dielectric-to-pyroelectric, and the effect of charging cycles, were studied to understand the surface charge formation on dielectric samples. Pyroelectrically charged dielectrics showed a surface potential of up to 400 V, with a linear dependence on the thermal gradient of the pyroelectric crystal. The charged surface showed good charge storage uniformity and stability at high temperatures (90 degrees C) and relative humidity (>85%). Using the pyroelectrically charged dielectrics, wearable motion sensors offering output signals in the range of tens of millivolts and a digital flexible invisible memory encoding with polarity switched (positive and negative charges) electrostatic bits are demonstrated.

2023

Wave Profile and Tide Monitoring System for Scalable Implementation

Authors
Rocha, JL; Matos, T; Faria, CL; Penso, CM; Martins, MS; Gomes, PA; Gonçalves, LM;

Publication
2023 IEEE SENSORS

Abstract
A versatile, miniaturized, cost-effective, low-power wave profile and tide monitoring system, capable of long-term and scalable deployment, was developed to integrate pressure and temperature sensors in an RS485 network, for standalone operation with organized memory or real-time shared data monitoring. The pressure and temperature sensors are controlled by low-power microcontrollers, that communicate the data periodically to a datalogger, that depending on the application, store it in a removable SD card or send it to a server via Wi-Fi. The data is then analyzed to compensate for the loss in amplitude sensitivity according to the sensor's depth. The wave profile can be sampled at a maximum rate of 100 Hz, with a 1 cm resolution. The system was tested successfully in real-life conditions, in rivers Douro and Cavado, and off the coast of Viana do Castelo.

2023

Safety Standards for Collision Avoidance Systems in Agricultural Robots - A Review

Authors
Martins, JJ; Silva, M; Santos, F;

Publication
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1

Abstract
To produce more food and tackle the labor scarcity, agriculture needs safer robots for repetitive and unsafe tasks (such as spraying). The interaction between humans and robots presents some challenges to ensure a certifiable safe collaboration between human-robot, a reliable system that does not damage goods and plants, in a context where the environment is mostly dynamic, due to the constant environment changes. A well-known solution to this problem is the implementation of real-time collision avoidance systems. This paper presents a global overview about state of the art methods implemented in the agricultural environment that ensure human-robot collaboration according to recognised industry standards. To complement are addressed the gaps and possible specifications that need to be clarified in future standards, taking into consideration the human-machine safety requirements for agricultural autonomous mobile robots.

2022

On the localization of an acoustic target using a single receiver

Authors
Ferreira, B; Alves, J; Cruz, N; Graca, P;

Publication
2022 OCEANS HAMPTON ROADS

Abstract
This paper addresses the localization of an unsynchronized acoustic source using a single receiver and a synthetic baseline. The enclosed work was applied in a real search of an electric glider that was lost at sea and later recovered, using the described approach. The search procedure is presented along with the localization methods and a metric based on the eigenvalues of the Fisher Information Matrix is used to quantify the expected uncertainty of the estimate.

2022

Multi-Objective Optimization of Sensor Placement in a 3D Body for Underwater Localization

Authors
Graca, PA; Alves, JC; Ferreira, BM;

Publication
2022 OCEANS HAMPTON ROADS

Abstract
Underwater acoustic localization is a challenging task. Most techniques rely on a network of acoustic sensors and beacons to estimate relative position, therefore localization uncertainty becomes highly dependent on the selected sensor configuration. Although several works in literature exploit optimal sensor placement to improve localization over large regions, the conditions contemplated in these are not applicable for the optimization of the acoustic sensors on constrained 3D shapes, such as the body of small underwater vehicles or structures. Additionally, most commercial systems used for localization with ultra-short baseline (USBL) configurations have compact acoustic sensors that cannot be spatially positioned independently. This work tackles the optimization of acoustic sensor placement in a limited 3D shape, in order to improve the localization accuracy for USBL applications. The implemented multi-objective memetic algorithm combines the Cramer-Rao Lower Bound (CRLB) configuration evaluation with incidence angle considerations for the sensor placement.

2022

Image segmentation and mapping in an underwater environment using an imaging sonar

Authors
Goncalves, PM; Ferreira, BM; Alves, JC; Cruz, NA;

Publication
2022 OCEANS HAMPTON ROADS

Abstract
Autonomous underwater vehicles (AUV) are increasing in popularity and importance for the realization of underwater explorations. Nowadays, these types of vehicles are implemented in underwater environments to accomplish tasks for military, scientific and industrial purposes. These vehicles can use imaging sonars that are effective in detecting the AUV's distance to an obstacle. The main goals of this paper were to extract meaningful information gathered by sonar, use it to map the surrounding environment, and locate the vehicle on the estimated map. To accomplish these goals, the system is composed of a constant false alarm rate (CFAR) algorithm to filter the sonar information, a feature extractor that filters the first obstacle for each sonar beam in a 360 degrees revolution, an Octomap to build the estimated map and a Particle Filter (PF) to locate the vehicle in the environment. This system was developed using a set of measurements in a rectangular tank where the AUV was in static positions and in motion.

  • 22
  • 177