2023
Authors
Marto, A; Goncalves, A; Melo, M; Bessa, M; Silva, R;
Publication
JOURNAL OF IMAGING
Abstract
The expansion of augmented reality across society, its availability in mobile platforms and the novelty character it embodies by appearing in a growing number of areas, have raised new questions related to people's predisposition to use this technology in their daily life. Acceptance models, which have been updated following technological breakthroughs and society changes, are known to be great tools for predicting the intention to use a new technological system. This paper proposes a new acceptance model aiming to ascertain the intention to use augmented reality technology in heritage sites-the Augmented Reality Acceptance Model (ARAM). ARAM relies on the use of the Unified Theory of Acceptance and Use of Technology model (UTAUT) model's constructs, namely performance expectancy, effort expectancy, social influence, and facilitating conditions, to which the new and adapted constructs of trust expectancy, technological innovation, computer anxiety and hedonic motivation are added. This model was validated with data gathered from 528 participants. Results confirm ARAM as a reliable tool to determine the acceptance of augmented reality technology for usage in cultural heritage sites. The direct impact of performance expectancy, facilitating conditions and hedonic motivation is validated as having a positive influence on behavioural intention. Trust expectancy and technological innovation are demonstrated to have a positive influence on performance expectancy whereas hedonic motivation is negatively influenced by effort expectancy and by computer anxiety. The research, thus, supports ARAM as a suitable model to ascertain the behavioural intention to use augmented reality in new areas of activity.
2023
Authors
Paiva, JC; Figueira, A; Leal, JP;
Publication
ELECTRONICS
Abstract
Learning to program requires diligent practice and creates room for discovery, trial and error, debugging, and concept mapping. Learners must walk this long road themselves, supported by appropriate and timely feedback. Providing such feedback in programming exercises is not a humanly feasible task. Therefore, the early and steadily growing interest of computer science educators in the automated assessment of programming exercises is not surprising. The automated assessment of programming assignments has been an active area of research for over a century, and interest in it continues to grow as it adapts to new developments in computer science and the resulting changes in educational requirements. It is therefore of paramount importance to understand the work that has been performed, who has performed it, its evolution over time, the relationships between publications, its hot topics, and open problems, among others. This paper presents a bibliometric study of the field, with a particular focus on the issue of automatic feedback generation, using literature data from the Web of Science Core Collection. It includes a descriptive analysis using various bibliometric measures and data visualizations on authors, affiliations, citations, and topics. In addition, we performed a complementary analysis focusing only on the subset of publications on the specific topic of automatic feedback generation. The results are highlighted and discussed.
2023
Authors
Figueiredo, A;
Publication
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION
Abstract
An important problem in directional statistics is to test the null hypothesis of a common mean direction for several populations. The Analysis of Variance (ANOVA) test for vectorial data may be used to test the hypothesis of the equality of the mean directions for several von Mises-Fisher populations. As this test is valid only for large concentrations, we propose in this paper to apply the resampling techniques of bootstrap and permutation to the ANOVA test. We carried out an extensive simulation study in order to evaluate the performance of the ANOVA test with the resampling techniques, for several sphere dimensions and different sample sizes and we compare with the usual ANOVA test for data from von Mises-Fisher populations. The purpose of this simulation study is also to investigate whether the proposed tests are preferable to the ANOVA test, for low concentrations and small samples. Finally, we present an example with spherical data.
2023
Authors
Brito, C; Ferreira, P; Portela, B; Oliveira, R; Paulo, J;
Publication
38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023
Abstract
We propose Soteria, a system for distributed privacy-preserving Machine Learning (ML) that leverages Trusted Execution Environments (e.g. Intel SGX) to run code in isolated containers (enclaves). Unlike previous work, where all ML-related computation is performed at trusted enclaves, we introduce a hybrid scheme, combining computation done inside and outside these enclaves. The conducted experimental evaluation validates that our approach reduces the runtime of ML algorithms by up to 41%, when compared to previous related work. Our protocol is accompanied by a security proof, as well as a discussion regarding resilience against a wide spectrum of ML attacks.
2023
Authors
Esteves, T; Macedo, R; Oliveira, R; Paulo, J;
Publication
CoRR
Abstract
2023
Authors
Ferreira, IA; Godina, R; Pinto, A; Pinto, P; Carvalho, H;
Publication
COMPUTERS & INDUSTRIAL ENGINEERING
Abstract
The role of new technologies such as additive manufacturing and blockchain technology in designing and implementing circular economy ecosystems is not a trivial issue. This study aimed to understand if blockchain technology can be an enabler tool for developing additive symbiotic networks. A real case study was developed regarding a circular economy ecosystem in which a fused granular fabrication 3D printer is used to valorize polycarbonate waste. The industrial symbiosis network comprised four stakeholders: a manufacturing company that produces polycarbonate waste, a municipality service responsible for the city waste management, a start-up holding the 3D printer, and a non-profit store. It was identified a set of six requirements to adopt the blockchain technology in an additive symbiotic network, bearing in mind the need to have a database to keep track of the properties of the input material for the 3D printer during the exchanges, in addition to the inexistence of mechanisms of trust or cooperation between well-established industries and the additive manufacturing industry. The findings suggested a permissioned blockchain to support the implementation of the additive symbiotic network, namely, to enable the physical transactions (quantity and quality of waste material PC sheets) and monitoring and reporting (additive manufacturing technology knowledge and final product's quantity and price).Future research venues include developing blockchain-based systems that enhance the development of ad-ditive symbiotic networks.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.