2025
Authors
Claro, RM; Neves, FSP; Pinto, AMG;
Publication
Journal of Field Robotics
Abstract
The integration of precise landing capabilities into unmanned aerial vehicles (UAVs) is crucial for enabling autonomous operations, particularly in challenging environments such as the offshore scenarios. This work proposes a heterogeneous perception system that incorporates a multimodal fiducial marker, designed to improve the accuracy and robustness of autonomous landing of UAVs in both daytime and nighttime operations. This work presents ViTAL-TAPE, a visual transformer-based model, that enhance the detection reliability of the landing target and overcomes the changes in the illumination conditions and viewpoint positions, where traditional methods fail. VITAL-TAPE is an end-to-end model that combines multimodal perceptual information, including photometric and radiometric data, to detect landing targets defined by a fiducial marker with 6 degrees-of-freedom. Extensive experiments have proved the ability of VITAL-TAPE to detect fiducial markers with an error of 0.01 m. Moreover, experiments using the RAVEN UAV, designed to endure the challenging weather conditions of offshore scenarios, demonstrated that the autonomous landing technology proposed in this work achieved an accuracy up to 0.1 m. This research also presents the first successful autonomous operation of a UAV in a commercial offshore wind farm with floating foundations installed in the Atlantic Ocean. These experiments showcased the system's accuracy, resilience and robustness, resulting in a precise landing technology that extends mission capabilities of UAVs, enabling autonomous and Beyond Visual Line of Sight offshore operations. © 2025 Wiley Periodicals LLC.
2025
Authors
Loureiro, G; Dias, A; Almeida, J; Martins, A; Silva, E;
Publication
JOURNAL OF MARINE SCIENCE AND ENGINEERING
Abstract
Climate change has led to the need to transition to clean technologies, which depend on an number of critical metals. These metals, such as nickel, lithium, and manganese, are essential for developing batteries. However, the scarcity of these elements and the risks of disruptions to their supply chain have increased interest in exploiting resources on the deep seabed, particularly polymetallic nodules. As the identification of these nodules must be efficient to minimize disturbance to the marine ecosystem, deep learning techniques have emerged as a potential solution. Traditional deep learning methods are based on the use of convolutional layers to extract features, while recent architectures, such as transformer-based architectures, use self-attention mechanisms to obtain global context. This paper evaluates the performance of representative models from both categories across three tasks: detection, object segmentation, and semantic segmentation. The initial results suggest that transformer-based methods perform better in most evaluation metrics, but at the cost of higher computational resources. Furthermore, recent versions of You Only Look Once (YOLO) have obtained competitive results in terms of mean average precision.
2025
Authors
Ferreira, A; Almeida, J; Matos, A; Silva, E;
Publication
ROBOTICS
Abstract
Due to space and energy restrictions, lightweight autonomous underwater vehicles (AUVs) are usually fitted with low-power processing units, which limits the ability to run demanding applications in real time during the mission. However, several robotic perception tasks reveal a parallel nature, where the same processing routine is applied for multiple independent inputs. In such cases, leveraging parallel execution by offloading tasks to a GPU can greatly enhance processing speed. This article presents a collection of generic matrix manipulation kernels, which can be combined to develop parallelized perception applications. Taking advantage of those building blocks, we report a parallel implementation for the 3DupIC algorithm-a probabilistic scan matching method for sonar scan registration. Tests demonstrate the algorithm's real-time performance, enabling 3D sonar scan matching to be executed in real time onboard the EVA AUV.
2025
Authors
Arriba Pérez, Fd; García Méndez, S; Leal, F; Malheiro, B; Burguillo, JC;
Publication
Integrated Computer-Aided Engineering
Abstract
2025
Authors
Malheiro, B; Guedes, P;
Publication
Competence Building in Sustainable Development
Abstract
2025
Authors
Lena Ehrenhofer; Lukasz Borowski; Noé Oliveira; Stijn Steyaert; Tamara Kronshagen; Tibo Clauwaert; Abel J. Duarte; Benedita Malheiro; Cristina Ribeiro; Jorge Justo; Manuel F. Silva; Paulo Ferreira; Pedro Guedes;
Publication
Futureproofing Engineering Education for Global Responsibility
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.